PROTEZIONI STRUTTURALI

STRUTTURE METALLICHE

COMPORTAMENTO DELL'ACCIAIO AL FUOCO

L'acciaio è un materiale incombustibile, non rilascia fumo o gas tossici, ma le sue caratteristiche meccaniche decrescono con la temperatura. Una struttura in acciaio, sottoposta all'azione dei carichi e contemporaneamente all'incendio perde la sua capacità portante e dopo un certo tempo collassa. Tale fenomeno è regolato da alcuni parametri fondamentali, quali: il salto termico, la temperatura dell'elemento, il coefficiente di trasmissione termica e il fattore di massività S/V cioè il rapporto tra la superficie esposta al fuoco ed il suo volume e la classe di duttilità.

METODI PER LA DETERMINAZIONE DELLE CLASSI DI RESISTENZA AL FUOCO "R"

Il D.M. 16 febbraio 2007 specifica che la resistenza al fuoco di una struttura portante in acciaio può essere valutata in base al risultato di:

- confronti con tabelle
- calcoli

VALUTAZIONE IN BASE AL CONFRONTO CON TABELLE:

Le tabelle contenute nel D.M. 16 Febbraio 2007 (allegato D.7) non possono essere utilizzate per la valutazione della classe di resistenza al fuoco di elementi in acciaio in quanto la loro validità è scaduta il 25 Settembre 2010.

VALUTAZIONE IN BASE AI RISULTATI DI CALCOLI:

L'allegato C del D.M. 16/2/2007 specifica che la resistenza al fuoco di una struttura metallica può essere valutata analiticamente attraverso i metodi di calcolo specificati dalla norma **EN 1993-1-2**:

"Progettazione delle strutture di acciaio – parte 1-2: Regole generali – progettazione strutturale contro l'incendio".

Tale norma specifica che la valutazione della resistenza degli elementi strutturali di acciaio sotto l'azione di un incendio può avvenire secondo differenti metodi o combinazione di essi:

- modelli di calcolo completi (metodi di progetto in cui vengono applicati principi ingegneristici in maniera realistica per applicazioni specifiche)
- modelli di calcolo semplice riferiti al singolo elemento (metodi di progetto semplificati applicabili a singoli elementi, basati su ipotesi cautelative)

I modelli di calcolo completi sono basati sul metodo agli elementi finiti: le aste o le loro sezioni trasversali vengono discretizzate in un certo numero di elementi di tipo 3D o 2D. Ad essi vengono applicate l'azione termica dovuta all'incendio sotto forma di flusso termico o di curva di incendio e le condizioni al contorno, ottenendo così sia la temperatura in ogni elemento che le sue dilatazioni e deformazioni.

I metodi semplificati sono procedimenti di calcolo basati su semplici equazioni che permettono di determinare la temperatura in modo approssimato: per le strutture di acciaio, generalmente essi si basano sull'ipotesi di temperatura uniforme su tutta la sezione trasversale o nelle parti in cui essa può essere suddivisa.

Nel seguito verrà illustrato solo il metodo semplificato definito nella EN 1993-1-2, definito "della temperatura critica"

Il calcolo passa attraverso l'individuazione di alcuni parametri fondamentali:

- La classe di duttilità delle sezioni
- La temperatura critica
- Il fattore di sezione (o massività)

TEMPERATURA CRITICA

Per ogni elemento di una struttura è possibile determinare una temperatura oltre la quale lo stesso non è più in grado di assolvere alla propria funzione portante, tale temperatura è detta **temperatura critica** θ_{cr} : temperatura in corrispondenza della quale la resistenza di progetto " $R_{fi,d}$ " è uguale alla sollecitazione di progetto " $E_{fi,d}$ " dovuta ai carichi applicati in condizioni di incendio e quindi ci si aspetta il collasso dell'elemento di acciaio strutturale.

Nell'ipotesi che la temperatura all'interno della sezione dell'elemento strutturale sia uniforme e che non sia richiesta la verifica di deformabilità della struttura, cioè che la resistenza dell'elemento non sia influenzata da fenomeni di instabilità o svergolamento in condizioni di incendio, la determinazione della temperatura critica dell'acciaio avviene tenendo conto:

- del grado di utilizzo μ_0 , definito come il rapporto fra l'azione di progetto in caso di incendio e la resistenza di progetto in caso di incendio calcolata per l'istante iniziale,
- della classe di duttilità della sezione dell'elemento.

Le sezioni degli elementi strutturali in acciaio sono suddivise in classi di duttilità identificate dai numeri da 1 a 4 in funzione della capacità di rotazione plastica delle sezioni, delle caratteristiche geometriche delle parti che la compongono, del tipo di sollecitazione a cui esse sono sottoposte e delle caratteristiche meccaniche del materiale impiegato. Vengono distinte:

- classe 1: sezioni per le quali può aversi la completa formazione di una cerniera plastica;
- classe 2: sezioni per le quali è prevista la completa formazione di una cerniera plastica, ma con limitata capacità di deformazione;
- classe 3: sezioni per le quali, a causa di fenomeni di instabilità locale, non è possibile la distribuzione plastica delle tensioni nella sezione e il momento ultimo coincide con quello al limite elastico convenzionale;
- classe 4: sezioni per le quali, a causa di importanti fenomeni d'instabilità locale, il momento ultimo è minore di quello al limite elastico convenzionale.

La temperatura critica è data dalla formula:

$$\theta_{a,cr} = 39,19 \ln \left[\frac{1}{0,9674 \mu_0^{3,833}} - 1 \right] + 482$$

Il grado di utilizzo all'istante iniziale μ_0 per elementi tesi o inflessi di classe 1, 2 e 3 può essere calcolato con la seguente relazione:

$$\mu_0 = \frac{E_{d,fi}}{R_{d,fi,0}}$$

dove $E_{d,fi}$ è la sollecitazione di progetto in caso di incendio e $R_{d,fi,0}$ è la resistenza di progetto in caso di incendio al tempo t=0.

In alternativa per elementi tesi, e per travi per cui l'instabilità flesso-torsionale non è una potenziale modalità di collasso il fattore di utilizzazione può essere ottenuto come:

$$\mu_0 = \eta_{fi} \frac{\gamma_{M,fi}}{\gamma_{M0}}$$

Dove η_{fi} è il fattore di riduzione dei carichi di progetto per la situazione di incendio, $\gamma_{M,0}$ è il coefficiente parziale di sicurezza per la resistenza alla temperatura ordinaria, $\gamma_{M,fi}$ è il coefficiente parziale di sicurezza per la resistenza in caso di incendio (=1,0).

Per le sezioni di classe 1, 2 e 3 con μ_0 compreso tra 0,22 e 0,80, la temperatura critica in °C assume i valori riportati nella tabella, mentre per sezioni di classe 4 la temperatura critica deve essere limitata a 350°C.

TEMPERATURA CRITICA $\theta_{a,cr}$ IN FUNZIONE DEL TASSO DI UTILIZZO μ_0

μ_0	$\theta_{a,cr}$										
0,22	711	0,32	654	0,42	612	0,52	578	0,62	549	0,72	520
0,24	698	0,34	645	0,44	605	0,54	572	0,64	543	0,74	514
0,26	685	0,36	636	0,46	598	0,56	566	0,66	537	0,76	508
0,28	674	0,38	628	0,48	591	0,58	560	0,68	531	0,78	502
0,30	664	0,40	620	0,50	585	0,60	554	0,70	526	0,80	495

FATTORE DI SEZIONE (O MASSIVITÀ)

Il fattore di sezione, per un dato elemento, è il rapporto tra la superficie esposta al fuoco ed il volume dell'elemento stesso. Per superficie esposta al fuoco si intende l'effettiva superficie attraverso cui avviene lo scambio termico, quindi il fattore di sezione risulterà diverso:

- a seconda del posizionamento dell'elemento (totale o parziale esposizione al fuoco)
- a seconda del tipo di protezione (in aderenza, scatolare, ecc.).

Nel caso di elementi aventi sezione trasversale costante, il fattore di sezione è dato dal rapporto tra il perimetro della sezione trasversale e l'area della stessa.

Di seguito si riportano alcuni esempi di calcolo del fattore di sezione e l'elenco dei valori di tale parametro per i profilati presenti in commercio.

Fattore di sezione A _p /V per elementi di acciaio iso	lati da materiale di pro	tezione al fuoco
	Descrizione	Fattore di sezione (A _p /V)
	Rivestimento scatola di spessore uniforme*	$\frac{2(b+h)}{A}$
	Rivestimento scatolare di spessore uniforme* esposto al fuoco sui tre lati	$\frac{2h+b}{A}$

* - Le dimensioni di gioco c₁ e c₂ non dovrebbero normalmente eccedere h/4 A= area della sezione trasversale di acciaio

DIMENSIONAMENTO DEL RIVESTIMENTO PROTETTIVO

L'allegato "A" del D.M. 16/02/2007 specifica che i test di laboratorio per la valutazione della resistenza al fuoco di elementi strutturali in acciaio devono essere condotti secondo la norma EN 13381-4 "Metodi di verifica del contributo alla resistenza al fuoco di elementi strutturali: Parte 4: rivestimenti protettivi applicati su struttura in acciaio", la quale ha lo scopo di determinare lo spessore del materiale protettivo al fine di ottenere una determinata resistenza al fuoco. Il risultato delle prove condotte secondo la EN 13381-4 non è un vera e propria classificazione dell'elemento, bensì una procedura (assesment) per la determinazione degli spessori necessari in funzione del tipo di elemento da proteggere.

Il procedimento per la valutazione dell'effetto della protezione su divide in due fasi:

- i test da eseguire in forno secondo le procedure standardizzate definite dalla norma
- l'elaborazione dei dati sperimentali al fine di poter estendere i risultati ai casi reali.

Attraverso la ripetizione delle medesime prove su elementi con diversa massività e con differenti spessori di rivestimento si ottengono abachi che consentono di estrapolare gli spessori del rivestimento per tutti i tipi di profilo. In particolare sono previste tre serie di campioni:

- la serie minima dei campioni non caricati
- la serie per la verifica di stickability, ovvero la determinazione dell'efficacia dell'adesione e dell'aderenza del sistema protettivo all'elemento strutturale al quale è imposta una deformazione iniziale
- la serie di campioni integrativi

I campioni provati sono travi e colonne in acciaio tipo I e H, caricati e non caricati. Ogni prova continua fino a quando l'acciaio non raggiunge la temperatura di 750°C. I risultati delle prove sono costituiti dalle temperature registrate sui campioni in varie posizioni durante tutta la prova e vengono rielaborati per poter valutare il comportamento del protettivo nelle situazioni reali.

La norma fornisce 3 metodi di analisi:

- metodo delle equazioni differenziali,
- metodo della regressione numerica,
- metodo grafico.

Col metodo della regressione numerica si definisce una equazione che esprime il tempo necessario per raggiungere una determinata temperatura di progetto in funzione dello spessore di protettivo e del fattore di sezione.

Il metodo grafico si basa, invece, sul tracciamento di una serie di curve che permettono di interpretare il corretto contributo del protettivo. I risultati vengono espressi sotto forma di tabelle in cui in funzione del fattore di sezione sono indicati gli spessori protettivi necessari affinché la temperatura dell'acciaio si mantenga al di sotto del valori di progetto. Le tabelle contenute nell'assesment permettono al professionista di dimensionare gli spessori dei materiali protettivi al fine di garantire la resistenza al fuoco di progetto.

I passi da compiere sono:

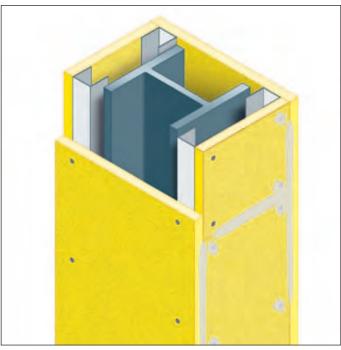
- determinazione della temperatura critica dell'elemento strutturale in base alle condizioni di carico, allo schema di vincolo e al tipo di profilo. Il metodo della temperatura critica è descritto nelle pagine precedenti.
- determinazione del fattore di sezione del profilo protetto in funzione dell'esposizione al fuoco (3 o 4 lati)
- determinazione dello spessore del protettivo nota la classe di resistenza al fuoco richiesta, in base agli abaci sperimentali provenienti dagli assesment di laboratorio.

L'appendice B della norma EN 13381-4 riporta indicazioni sull'applicabilità dei risultati a profili con sezioni diverse da "l" o "H"; in particolare:

- nel caso di protezione scatolare non è necessario provvedere alla variazione dello spessore del materiale protettivo. Più precisamente lo spessore della protezione scatolare di un profilo a sezione cava con un determinato fattore di sezione A_p/V sarà il medesimo della protezione scatolare del profilo a sezione "I" o "H" con lo stesso fattore A_p/V .
- -nel caso di protezione profilata si richiede una variazione dello spessore del rivestimento protettivo sulla base del valore del fattore di sezione del profilo a sezione cava, con le seguenti modalità:
 - a) si stabilisce il valore del fattore di sezione A_{p}/V della sezione strutturale cava;
 - b) si verifica lo spessore del materiale protettivo d_{p} basandosi sui dati delle sezioni a "I" e "H".
 - c) lo spessore viene modificato nel seguente modo:

spessore mod ificato =
$$d_p \left(1 + \frac{A_p / V}{1000} \right)$$

Per valori di A_p/V fino a 250 m-1.


Per valori di A_p/V superiori a 250 m-1 lo spessore modificato è pari a 1,25 d_p.

Di seguito vengono riportati gli spessori del rivestimento protettivo in lastre FIREGUARD® necessari per la protezione R15, R30, R45, R60, R90, R120, R180, R240 e R300 di travi e colonne in acciaio in funzione del fattore di sezione dei profili e della temperatura critica.

Tali dati sono certificati attraverso l'assesment report Applus 11-2720-730 M1 eseguito in conformità alla EN 13381-4.

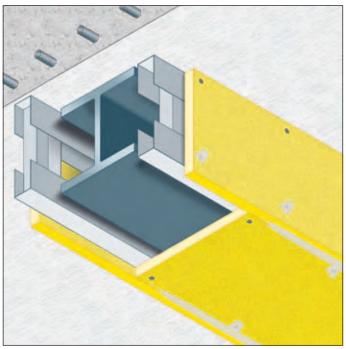
PILASTRI IN ACCIAIO

DESCRIZIONE DI CAPITOLATO

Fornitura e posa in opera di protezione di pilastri in acciaio con resistenza al fuoco R15/30/45/60/90/120/180/240 realizzata con lastre FIREGUARD® spessore... (vedi tabelle), dimensioni massime 1220x2000 mm, costituite da silicati e solfati di calcio, esenti da amianto, prodotte per laminazione con controllo dell'essiccazione in stabilimento, omologate in classe A1 (incombustibile) di reazione al fuoco, in conformità al rapporto di valutazione Applus 11-2720-730 M1 secondo norma EN 13381-4.

REAZIONE AL FUOCO: A1 RESISTENZA AL FUOCO: R30-240

- Supporto: pilastri in acciaio
- Orditura: montanti verticali a "C" 50x50x0,6 mm posti agli angoli del pilastro e inseriti in guide a "U" 50x40x0,6 mm poste alla base ed alla sommità del profilato in acciaio
- Rivestimento protettivo: lastre FIREGUARD® (vedi tabelle)
- Fissaggio: con viti autoperforanti fosfatate diam. 3,5 mm poste ad interasse 250 mm
- Finitura: stuccatura dei giunti e delle teste delle viti con stucco FIREGUARD COMPOUND


Assesment report Applus 11-2720-730 M1 Norma di prova: EN 13381-4

Le lastre saranno applicate con viti autoperforanti fosfatate diametro 3,5 mm con lunghezza opportuna con passo 250 mm a profili montanti verticali a "C" 50x50x0,6 mm posti agli angoli del pilastro, inseriti in guide a "U" 50x40x0,6 mm poste alla base ed alla sommità del pilastro.

La finitura dei giunti e delle teste delle viti sarà realizzata con stucco FIREGUARD COMPOUND.

Per le modalità di applicazione si veda apposito "manuale di posa".

TRAVI IN ACCIAIO

DESCRIZIONE DI CAPITOLATO

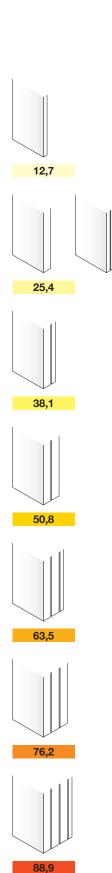
Fornitura e posa in opera di protezione di travi in acciaio con resistenza al fuoco R15/30/45/60/90/120/180/240 realizzata con lastre FIREGUARD® spessore... (vedi tabelle), dimensioni massime 1220x2000 mm, costituite da silicati e solfati di calcio, esenti da amianto, prodotte per laminazione con controllo dell'essiccazione in stabilimento, omologate in classe A1 (incombustibile) di reazione al fuoco, in conformità al rapporto di valutazione Applus 11-2720-730 M1 secondo norma EN 13381-4.

REAZIONE AL FUOCO: A1 RESISTENZA AL FUOCO: R30-240

- Supporto: travi in acciaio
- Orditura: montanti verticali a "C" 75x50x0,6 mm posti ai lati del profilo in acciaio a interasse 550 mm e inseriti in guide a "U" 75x40x0,6 mm poste a soffitto e nella parte bassa del profilo
- Rivestimento protettivo: lastre FIREGUARD® (vedi tabelle)
- Fissaggio: con viti autoperforanti fosfatate diam. 3,5 mm poste ad interasse 250 mm
- Finitura: stuccatura dei giunti e delle teste delle viti con stucco FIREGUARD COMPOUND

Assesment report Applus 11-2720-730 M1 Norma di prova: EN 13381-4

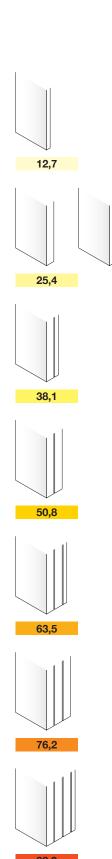
Le lastre saranno applicate con viti autoperforanti fosfatate diametro 3,5 mm con lunghezza opportuna con passo 250 mm a profili montanti verticali a "C" 75x50x0,6 mm posti ai lati della trave ad interasse 550 mm, inseriti in guide a "U" 75x40x0,6 mm poste a soffitto e nella parte bassa della trave.


La finitura dei giunti e delle teste delle viti sarà realizzata con stucco FIREGUARD COMPOUND.

Per le modalità di applicazione si veda apposito "manuale di posa".

TEMPERATURA CRITICA Ocr 350° C

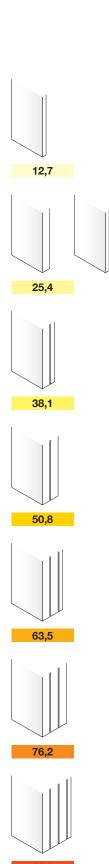
PER PROFILI IN CLASSE DI DUTTILITÀ 4


Fatt. di sezione		EZIONE T				OSIZIONE	3 O 4 LAT	1	
m-1	R15	R30	R45	R60	R90	R120	R180	R240	R300
45	12,7	12,7	12,7	12,7	25,4	25,4	50,8	76,2	1.000
50	12,7	12,7	12,7	12,7	25,4	38,1	50,8	76,2	
60	12,7	12,7	12,7	12,7	25,4	38,1	50,8	76,2	
70	12,7	12,7	12,7	25,4	25,4	38,1	63,5	76,2	
80	12,7	12,7	12,7	25,4	25,4	38,1	63,5	76,2	
90	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
100	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
110	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
120	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
130	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
140	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
150	12,7	12,7	25,4	25,4	38,1	50,8	63,5	76,2	
160	12,7	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
170	12,7	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
180	12,7	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
190	12,7	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
200	12,7	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
210	12,7	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
220	12,7	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
230	12,7	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
240	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
250	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
260	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
270	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
280	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
290	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
300	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
310	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
320	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
330	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
340	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
350	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
360	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
370	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
380	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
390	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
400	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
410	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
420	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
430	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
440	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
450	25,4	25,4	25,4	38,1	38,1	50,8	76,2		

TEMPERATURA CRITICA Ocr 500° C

PER PROFILI IN CLASSE DI DUTTILITÀ 1/2/3 - FATTORE DI UTILIZZAZIONE μ = 0,8

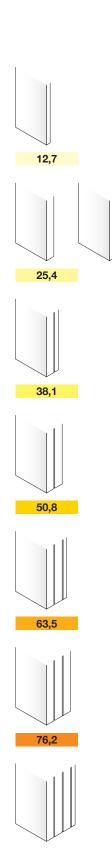
Dimensionamento degli spessori protettivi secondo norma EN 13381-4 con lastre FIREGUARD®


Fatt. di	DDOT	EZIONE T	DAVI E CO	OLONNE (CON ESDO	SIZIONE	2041 AT	·	
sezione		SIFICAZIO					3 U 4 LAI	•	
m-1	R15	R30	R45	R60	R90	R120	R180	R240	R300
45	12,7	12,7	12,7	12,7	12,7	25,4	38,1	63,5	76,2
50	12,7	12,7	12,7	12,7	12,7	25,4	38,1	63,5	88,9
60	12,7	12,7	12,7	12,7	25,4	25,4	50,8	63,5	
70	12,7	12,7	12,7	12,7	25,4	38,1	50,8	63,5	
80	12,7	12,7	12,7	12,7	25,4	38,1	50,8	76,2	
90	12,7	12,7	12,7	12,7	25,4	38,1	50,8	76,2	
100	12,7	12,7	12,7	25,4	25,4	38,1	50,8	76,2	
110	12,7	12,7	12,7	25,4	25,4	38,1	50,8	76,2	
120	12,7	12,7	12,7	25,4	25,4	38,1	63,5	76,2	
130	12,7	12,7	12,7	25,4	25,4	38,1	63,5	76,2	
140	12,7	12,7	12,7	25,4	25,4	38,1	63,5	76,2	
150	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
160	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
170	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
180	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
190	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
200	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
210	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
220	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
230	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
240	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
250	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
260	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
270	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
280	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
290	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
300	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
310	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
320	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
330	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
340	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
350	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
360	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
370	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
380	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
390	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
400	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
410	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
420	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
430	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
440	25,4	25,4	25,4	38,1	38,1	50,8	76,2		
450	25,4	25,4	25,4	38,1	38,1	50,8	76,2		

TEMPERATURA CRITICA OCR 550° C

PER PROFILI IN CLASSE DI DUTTILITÀ 1/2/3 - FATTORE DI UTILIZZAZIONE μ = 0,6

Dimensionamento degli spessori protettivi secondo norma EN 13381-4 con lastre FIREGUARD®


Fatt. di sezione		EZIONE T				OSIZIONE CO "R"	3 O 4 LAT	I	
m-1	R15	R30	R45	R60	R90	R120	R180	R240	R300
45	12,7	12,7	12,7	12,7	12,7	12,7	38,1	63,5	76,2
50	12,7	12,7	12,7	12,7	12,7	25,4	38,1	63,5	76,2
60	12,7	12,7	12,7	12,7	12,7	25,4	50,8	63,5	88,9
70	12,7	12,7	12,7	12,7	25,4	25,4	50,8	63,5	
80	12,7	12,7	12,7	12,7	25,4	38,1	50,8	63,5	
90	12,7	12,7	12,7	12,7	25,4	38,1	50,8	76,2	
100	12,7	12,7	12,7	12,7	25,4	38,1	50,8	76,2	
110	12,7	12,7	12,7	12,7	25,4	38,1	50,8	76,2	
120	12,7	12,7	12,7	25,4	25,4	38,1	50,8	76,2	
130	12,7	12,7	12,7	25,4	25,4	38,1	50,8	76,2	
140	12,7	12,7	12,7	25,4	25,4	38,1	50,8	76,2	
150	12,7	12,7	12,7	25,4	25,4	38,1	63,5	76,2	
160	12,7	12,7	12,7	25,4	25,4	38,1	63,5	76,2	
170	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
180	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
190	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
200	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
210	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
220	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
230	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
240	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
250	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
260	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
270	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
280	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
290	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
300	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
310	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
320	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
330	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
340	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
350	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
360	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
370	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
380	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
390	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
400	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
410	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
420	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
430	25,4	25,4	25,4	25,4	38,1	50,8	63,5		
440	25,4	25,4	25,4	38,1	38,1	50,8	63,5		
450	25,4	25,4	25,4	38,1	38,1	50,8	63,5		

TEMPERATURA CRITICA Ocr 630° C

PER PROFILI IN CLASSE DI DUTTILITÀ 1/2/3 - FATTORE DI UTILIZZAZIONE μ = 0,38

Dimensionamento degli spessori protettivi secondo norma EN 13381-4 con lastre FIREGUARD®

Fatt. di sezione					ON ESPO		3 O 4 LAT	T .	
m-1	R15	R30	R45	R60	R90	R120	R180	R240	R300
45	12,7	12,7	12,7	12,7	12,7	12,7	38,1	50,8	76,2
50	12,7	12,7	12,7	12,7	12,7	12,7	38,1	50,8	76,2
60	12,7	12,7	12,7	12,7	12,7	25,4	38,1	63,5	76,2
70	12,7	12,7	12,7	12,7	12,7	25,4	50,8	63,5	88,9
80	12,7	12,7	12,7	12,7	25,4	25,4	50,8	63,5	88,9
90	12,7	12,7	12,7	12,7	25,4	25,4	50,8	63,5	
100	12,7	12,7	12,7	12,7	25,4	38,1	50,8	63,5	
110	12,7	12,7	12,7	12,7	25,4	38,1	50,8	76,2	
120	12,7	12,7	12,7	12,7	25,4	38,1	50,8	76,2	
130	12,7	12,7	12,7	12,7	25,4	38,1	50,8	76,2	
140	12,7	12,7	12,7	25,4	25,4	38,1	50,8	76,2	
150	12,7	12,7	12,7	25,4	25,4	38,1	50,8	76,2	
160	12,7	12,7	12,7	25,4	25,4	38,1	50,8	76,2	
170	12,7	12,7	12,7	25,4	25,4	38,1	50,8	76,2	
180	12,7	12,7	12,7	25,4	25,4	38,1	50,8	76,2	
190	12,7	12,7	12,7	25,4	25,4	38,1	63,5	76,2	
200	12,7	12,7	12,7	25,4	25,4	38,1	63,5	76,2	
210	12,7	12,7	12,7	25,4	25,4	38,1	63,5	76,2	
220	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
230	12,7	12,7	25,4	25,4	38,1	38,1	63,5	76,2	
240	25,4	25,4	25,4	25,4	38,1	38,1	63,5	76,2	
250	25,4	25,4	25,4	25,4	38,1	38,1	63,5	76,2	
260	25,4	25,4	25,4	25,4	38,1	38,1	63,5	76,2	
270	25,4	25,4	25,4	25,4	38,1	38,1	63,5	76,2	
280	25,4	25,4	25,4	25,4	38,1	38,1	63,5	76,2	
290	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
300	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
310	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
320	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
330	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
340	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
350	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
360	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
370	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
380	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
390	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
400	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
410	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
420	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
430	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
440	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	
450	25,4	25,4	25,4	25,4	38,1	50,8	63,5	76,2	

PROFILO				ESSI0			PRESS	
C	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
C 75 x 6,1	241	286	1	1		1	1	
C 75 x 7,4	201	240	1	1		1	1	
C 75 x 8,9	170	205	1	1		1	1	
C 100 x 8	239	278	1	1		1	1	
C 100 x 10,8	179	210	1	1		1	1	
C 130 x 10,4	227	263	1	1		1	1	
C 130 x 13	177	205	1	1		1	1	
C 150 x 12,2	227	258	1	1		1	1	
C 150 x 15,6	179	205	1	1		1	1	
C 150 x 19,3	146	168	1	1		1	1	
C 180 x 14,6	220	248	1	1		1	1	
C 180 x 18,2	177	201	1	1		1	1	
C 180 x 22	148	168	1	1		1	1	
C 200 x 17,1	213	240	1	1		1	2	
C 200 x 20,5	179	202	1	1		1	1	
C 200 x 27,9	132	150	1	1		1	1	
C 230 x 19,9	204	228	1	1		1	2	
C 230 x 22	183	205	1	1		1	1	
C 230 x 30	138	156	1	1		1	1	
C 250 x 22,8	199	222	1	1		2	3	
C 250 x 30	153	171	1	1		1	1	
C 250 x 37	128	144	1	1		1	1	
C 250 x 45	103	116	1	1		1	1	
C 310 x 30,8	174	193	1	1		2	4	
C 310 x 37	146	162	1	1		1	1	
C 310 x 45	121	135	1	1		1	1	
C 380 x 50,4	132	145	1	1		1	2	
C 380 x 60	112	124	1	1		1	1	
C 380 x 74	90	100	1	1		1	1	

PROFILO			FLESSIONE			СОМ	SIONE	
СН	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
CH 76x38x7	221	265	1	1		1	1	
CH 102x51x10	193	232	1	1		1	1	
CH 127x64x15	169	203	1	1		1	1	
CH 152x76x18	169	203	1	1		1	1	
CH 152x89x24	131	161	1	1		1	1	
CH 178x76x21	164	192	1	1		1	1	
CH 178x89x27	132	158	1	1		1	1	
CH 203x76x24	159	185	1	1		1	1	
CH 203x89x30	132	155	1	1		1	1	
CH 229x76x26	161	184	1	1		1	1	
CH 229x89x33	132	153	1	1		1	1	
CH 245x76x28	163	184	1	1		1	1	
CH 245x89x36	132	151	1	1		1	1	
CH 305x89x42	132	149	1	1		1	1	
CH 305x102x46	122	140	1	1		1	1	
CH 305x102x55	124	139	1	1		1	2	
CH 432x102x65	117	130	1	1		1	2	

			L					
PROFILO			FL	ESSI0	NE	СОМ	PRESS	IONE
Н	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
H 100x100x6x8	139	185	1	1		1	1	
H 125x125x6,5x9	125	167	1	1		1	1	
H 150x75x5x7	210	252	1	1		1	1	
H 150x150x7x10	113	151	1	1		1	1	
H 175x175x7,5x11	102	136	1	1		1	1	
H 200x100x4,5x7	218	262	1	1		2	4	
H 200x100x4,5x7	187	225	1	1		1	2	<u> </u>
H 200x200x8x12	94	126	1	2		1	2	<u> </u>
H 200x200x12x12	84	113	1	2		1	2	
H 250x125x5x8	194	233	1	1		4	4	<u> </u>
H 250x125x6x9	169	203	1	1		2	4	<u> </u>
H 250x250x11x11	91	122	3	3		3	3	
H 250x250x11x11	82	109	1	2		1	2	
H 250x250x9x14	73	97	1	3		1	3	
	183	219	1	3		4	4	-
H 300x150x5,5x8		192	1	2		3	4	
H 300x150x6,5x9 H 300x300x12x12	160	112	3	4		3	4	
	84		ئ 1			1		
H 300x300x10x15	76	101		3		<u> </u>	3	
H 300x300x15x15	68	91	2	3		2	3	
H 350x175x6x9	165	198	1	3		4	4	-
H 350x175x7x11	139	167	1	1		4	4	-
H 350x350x13x13	77	103	3	4		3	4	
H 350x350x10x16	72	96	2	3		2	3	
H 350x350x16x16	63	85	3	3		3	3	
H 350x350x12x19	61	81	1	3		1	3	
H 350x350x19x19	54	72	1	3		1	3	
H 400x300x10x16	81	104	1	3		2	3	
H 400x400x15x15	66	89	3	4		3	4	
H 400x400x11x18	63	85	3	3		3	3	
H 400x400x18x18	56	75	3	3		3	3	
H 400x400x13x21	55	73	1	3		1	3	
H 400x400x21x21	48	64	1	3		1	3	
H 400x400x18x28	42	55	1	1		1	1	
H 400x400x20x35	35	46	1	1		1	1	
H 400x400x30x50	25	33	1	1		1	1	
H 500x200x9x14	120	140	1	1		4	4	
H 500x200x10x16	107	125	1	1		4	4	
H 500x200x11x19	94	109	1	1		3	4	
H 500x300x11x15	90	111	1	3		3	4	<u> </u>
H 500x300x11x18	80	99	1	2		3	4	
H 600x300x12x17	87	104	1	2		4	4	
H 600x300x12x20	79	95	1	1		4	4	
H 600x300x14x23	69	83	1	1		2	4	
H 700x300x13x20	81	96	1	1		4	4	
H 700x300x13x24	73	86	1	1		4	4	
H 800x300x14x22	79	91	1	1		4	4	
H 800x300x14x26	72	83	1	1		4	4	
H 900x300x15x23	78	89	1	1		4	4	
H 900x300x16x28	69	78	1	1		4	4	
H 900x300x18x34	59	67	1	1		4	4	

PR0FIL0			FL	ESSI0	NE	COM	PRESS	SIONE
HD	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
HD 260 x 68,2	88	117	2	3	3	2	3	3
HD 260 x 93,0	66	88	1	1	2	1	1	2
HD 260 x 114	55	73	1	1	1	1	1	1
HD 260 x 142	46	60	1	1	1	1	1	1
HD 260 x 172	39	51	1	1	1	1	1	1
HD 320 x 74,2	95	127	3	4	4	3	4	4
HD 320 x 97,6	74	98	1	3	3	1	3	3
HD 320 x 127	58	77	1	1	2	1	1	2
HD 320 x 158	48	63	1	1	1	1	1	1
HD 320 x 198	39	51	1	1	1	1	1	1
HD 320 x 245	33	43	1	1	1	1	1	1
HD 320 x 300	28	36	1	1	1	1	1	1
HD 360 x 134	63	85	2	3	3	2	3	3
HD 360 x 147	58	78	1	3	3	1	3	3
HD 360 x 162	53	71	1	2	3	1	2	3
HD 360 x 179	49	65	1	1	2	1	1	2
HD 360 x 196	45	60	1	1	1	1	1	1
HD 400 x 187	47	64	1	2	3	1	2	3
HD 400 x 216	42	56	1	1	1	1	1	1
HD 400 x 237	38	52	1	1	1	1	1	1
HD 400 x 262	35	47	1	1	1	1	1	1
HD 400 x 287	32	43	1	1	1	1	1	1
HD 400 x 314	30	40	1	1	1	1	1	1
HD 400 x 347	28	37	1	1	1	1	1	1
HD 400 x 382	25	34	1	1	1	1	1	1
HD 400 x 421	23	31	1	1	1	1	1	1
HD 400 x 463	22	29	1	1	1	1	1	1
HD 400 x 509	20	27	1	1	1	1	1	1
HD 400 x 551	19	25	1	1	1	1	1	1
HD 400 x 592	18	23	1	1	1	1	1	1
HD 400 x 634	17	22	1	1	1	1	1	1
HD 400 x 677	16	21	1	1	1	1	1	1
HD 400 x 744	15	20	1	1	1	1	1	1
HD 400 x 818	14	18	1	1	1	1	1	1
HD 400 x 900	13	17	1	1	1	1	1	1
HD 400 x 990	12	16	1	1	1	1	1	1
HD 400 x 1086	11	15	1	1	1	1	1	1

PROFILO			FLESSIONE COMPRESSIO			SIONE		
HE	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
HE 100 AA	181	245	1	3	3	1	3	3
HE 100 A	138	185	1	1	1	1	1	1
HE 100 B	115	154	1	1	1	1	1	1
HE 100 M	65	85	1	1	1	1	1	1
HE 120 AA	182	247	2	3	4	2	3	4
HE 120 A	137	185	1	1	2	1	1	2
HE 120 B	106	141	1	1	1	1	1	1
HE 120 M	61	80	1	1	1	1	1	1
HE 140 AA	172	233	3	3	4	3	3	4

T DOT TILIT				-/ \liv				
PROFILO			FL	ESSI0	NE	сом	PRESS	IONE
HE	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
HE 140 A	129	174	1	2	3	1	2	3
HE 140 B	98	130	1	1	1	1	1	1
HE 140 M	58	76	1	1	1	1	1	1
HE 160 AA	150	203	3	3	4	3	3	4
HE 160 A	120	161	1	2	3	1	2	3
HE 160 B	88	118	1	1	1	1	1	1
HE 160 M	54	71	1	1	1	1	1	1
HE 180 AA	141	190	3	3	4	3	3	4
HE 180 A	115	155	1	3	3	1	3	3
HE 180 B	83	110	1	1	1	1	1	1
HE 180 M	52	68	1	1	1	1	1	1
HE 200 AA	130	175	3	4	4	3	4	4
HE 200 A	108	145	1	3	3	1	3	3
HE 200 B	77	102	1	1	1	1	1	1
HE 200 M	49	65	1	1	1	1	1	1
HE 220 AA	122	165	3	4	4	3	4	4
HE 220 A	99	134	1	3	3	1	3	3
HE 220 B	72	97	1	1	1	1	1	1
HE 220 M	47	62	1	1	1	1	1	1
HE 240 AA	114	154	3	4	4	3	4	4
HE 240 AA	91	122	1	3	3	1	3	3
HE 240 B	68	91	1	1	1	1	1	1
HE 240 M	39	52	1	1	-	1	1	-
HE 260 AA	108	146	3	4	4	3	4	4
HE 260 AA			2	3	3	2	3	3
HE 260 B	88 66	117 88	1	ა 1	2	1	1	2
HE 260 M	39	51	1	1	1	1	1	1
HE 280 AA	104	139	3	4	4	3	4	4-
HE 280 A						_		
HE 280 B	84	113 85	2	3	2	2	3	2
	64		_					
HE 280 M	38 97	50 131	3	1	1	3	1	4
HE 300 AA				4		_	4	
HE 300 A	78	105	2	3	3	2	3	3
HE 300 B	60	80	1	1	3	1	1	3
HE 300 M	33	43	1	1	1	1	1	1
HE 320 AA	95	127	3	4	4	3	4	4
HE 320 A	74	98	1	3	3	1	3	3
HE 320 B	58	77	1	1	2	1	1	2
HE 320 M	33	43	1	1	1	1	1	1
HE 340 AA	94	123	3	4	4	3	4	4
HE 340 A	72	94	1	3	3	1	3	3
HE 340 B	57	75	1	1	1	1	1	1
HE 340 M	34	43	1	1	1	1	1	1
HE 360 AA	92	120	3	4	4	3	4	4
HE 360 A	70	91	1	2	3	1	2	3
HE 360 B	56	73	1	1	1	1	1	1
HE 360 M	34	44	1	1	1	1	1	1
HE 400 AA	90	115	3	3	4	3	3	4
HE 400 A	68	87	1	1	3	1	2	3
HE 400 B	56	71	1	1	1	1	1	1
HE 400 M	36	45	1	1	1	1	1	1
HE 450 AA	91	114	3	3	4	3	4	4
HE 450 A	66	83	1	1	1	1	2	3

			EI EGGIONE						
PR0FIL0			FL	ESSI0	NE	COM	PRESS	SIONE	
HE	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460	
HE 450 B	55	69	1	1	1	1	1	2	
HE 450 M	38	47	1	1	1	1	1	1	
HE 500 AA	91	113	2	3	3	2	4	4	
HE 500 A	65	80	1	1	1	1	3	4	
HE 500 B	54	67	1	1	1	1	2	2	
HE 500 M	39	48	1	1	1	1	1	1	
HE 550 AA	88	108	1	3	3	3	4	4	
HE 550 A	65	79	1	1	1	2	4	4	
HE 550 B	55	67	1	1	1	1	2	3	
HE 550 M	41	50	1	1	1	1	1	1	
HE 600 AA	88	106	1	3	3	3	4	4	
HE 600 A	65	79	1	1	1	2	4	4	
HE 600 B	56	67	1	1	1	1	3	4	
HE 600 M	42	51	1	1	1	1	1	1	
HE 600 x 337	37	44	1	1	1	1	1	1	
HE 600 x 399	32	38	1	1	1	1	1	1	
HE 650 AA	88	105	1	3	3	4	4	4	
HE 650 A	65	78	1	1	1	3	4	4	
HE 650 B	56	66	1	1	1	2	3	4	
HE 650 M	44	52	1	1	1	1	1	2	
HE 650 x 343	38	45	1	1	1	1	1	1	
HE 650 x 407	33	39	1	1	1	1	1	1	
HE 700 AA	86	102	1	2	3	4	4	4	
HE 700 A	64	76	1	1	1	3	4	4	
HE 700 B	55	65	1	1	1	2	4	4	
HE 700 M	45	53	1	1	1	1	2	3	
HE 700 x 352	39	46	1	1	1	1	1	1	
HE 700 x 418	34	40	1	1	1	1	1	1	
HE 800 AA	84	98	1	2	3	4	4	4	
HE 800 A	66	76	1	1	1	4	4	4	
HE 800 B	57	66	1	1	1	3	4	4	
HE 800 M	48	55	1	1	1	1	3	4	
HE 800 x 373	41	48	1	1	1	1	2	2	
HE 800 x 444	35	41	1	1	1	1	1	1	
HE 900 AA	81	93	1	1	2	4	4	4	
HE 900 A	65	74	1	1	1	4	4	4	
HE 900 B	57	65	1	1	1	3	4	4	
HE 900 M	50	57	1	1	1	2	4	4	
HE 900 x 391	43	49	1	1	1	1	3	4	
HE 900 x 466	37	42	1	1	1	1	1	2	
HE 1000 AA	79	90	1	1	-	4	4	-	
HE 1000 x 249	71	81	1	1	2	4	4	4	
HE 1000 A	66	74	1	1	2	4	4	4	
HE 1000 B	57	65	1	1	1	4	4	4	
HE 1000 M	52	59	1	1	1	3	4	4	
HE 1000 x 393	47	53	1	1	1	2	4	4	
HE 1000 x 415	44	50	1	1	1	2	3	4	
HE 1000 x 438	42	48	1	1	1	1	3	4	
HE 1000 x 494	38	43	1	1	1	1	2	3	
HE 1000 x 584	33	37	1	1	1	1	1	2	
				<u> </u>		<u> </u>	<u> </u>		

PROFILO			FLESSIONE COMPR				PRESS	SIONE
HL	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
HL 920 x 345	52	62	1	1	1	4	4	4
HL 920 x 368	49	58	1	1	1	3	4	4
HL 920 x 390	46	55	1	1	1	3	4	4
HL 920 x 420	43	51	1	1	1	2	4	4
HL 920 x 449	41	48	1	1	1	2	4	4
HL 920 x 491	37	44	1	1	1	1	3	4
HL 920 x 537	35	41	1	1	1	1	2	3
HL 920 x 588	32	37	1	1	1	1	1	2
HL 920 x 656	29	34	1	1	1	1	1	2
HL 920 x 725	26	31	1	1	1	1	1	1
HL 920 x 787	25	29	1	1	1	1	1	1
HL 920 x 970	20	24	1	1	1	1	1	1
HL 1000 AA	63	73	1	1	2	4	4	4
HL 1000 A	58	68	1	1	2	4	4	4
HL 1000 B	51	59	1	1	1	4	4	4
HL 1000 M	46	54	1	1	1	3	4	4
HL 1000 x 443	43	50	1	1	1	2	4	4
HL 1000 x 483	40	46	1	1	1	2	4	4
HL 1000 x 539	36	42	1	1	1	1	2	4
HL 1000 x 554	35	41	1	1	1	1	2	3
HL 1000 x 591	33	39	1	1	1	1	2	3
HL 1000 x 642	31	36	1	1	1	1	1	2
HL 1000 x 748	27	31	1	1	1	1	1	1
HL 1000 x 883	23	27	1	1	-	1	1	-
HL 1100 A	59	68	1	1	2	4	4	4
HL 1100 B	52	60	1	1	1	4	4	4
HL 1100 M	47	55	1	1	1	4	4	4
HL 1100 R	42	48	1	1	1	2	4	4

PR0FIL0			FLESSIONE COMPRESSION					SIONE
HP	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
HP 200 x 43	112	150	3	3	4	3	3	4
HP 200 x 53	90	121	1	3	3	1	3	3
HP 220 x 57	88	119	2	3	3	2	3	3
HP 260 x 75	80	108	3	3	4	3	3	4
HP 260 x 87	70	94	1	3	3	1	3	3
HP 305 x 79	91	121	3	4	4	3	4	4
HP 305 x 88	81	109	3	4	4	3	4	4
HP 305 x 95	76	101	3	3	4	3	3	4
HP 305 x 110	66	88	2	3	3	2	3	3
HP 305 x 126	58	78	1	2	3	1	2	3
HP 305 x 149	50	67	1	1	2	1	1	2
HP 305 x 180	42	56	1	1	1	1	1	1
HP 305 x 186	41	55	1	1	1	1	1	1
HP 305 x 223	35	47	1	1	1	1	1	1
HP 320 x 88	81	108	3	4	4	3	4	4

PR0FIL0			FLESSIONE COMF				PRESS	IONE			
HP	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460			
HP 320 x 103	70	94	2	3	4	2	3	4			
HP 320 x 117	62	83	1	3	3	1	3	3			
HP 320 x 147	51	68	1	1	2	1	1	2			
HP 320 x 184	42	55	1	1	1	1	1	1			
HP 360 x 84	98	132	4	4	4	4	4	4			
HP 360 x 109	77	103	3	4	4	3	4	4			
HP 360 x 133	64	86	3	3	4	3	3	4			
HP 360 x 152	56	76	2	3	3	2	3	3			
HP 360 x 174	50	67	1	3	3	1	3	3			
HP 360 x 180	48	65	1	3	3	1	3	3			
HP 400 x 122	70	95	3	4	4	3	4	4			
HP 400 x 140	61	83	3	4	4	3	4	4			
HP 400 x 158	55	74	2	3	4	2	3	4			
HP 400 x 176	50	67	1	3	3	1	3	3			
HP 400 x 194	46	62	1	3	3	1	3	3			
HP 400 x 213	42	57	1	2	3	1	2	3			
HP 400 x 231	39	53	1	1	2	1	1	2			

PROFILO			FLESSIONE			СОМІ	PRESS	SIONE
INP	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
INP 80	266	322	4	4		4	4	
INP 100	236	283	1	1		1	1	
INP 120	210	251	1	1		1	1	
INP 140	189	225	1	1		1	1	
INP 160	173	205	1	1		1	1	
INP 180	158	188	1	1		1	1	
INP 200	147	174	1	1		1	1	
INP 220	136	161	1	1		1	1	
INP 240	127	150	1	1		1	1	
INP 260	119	140	1	1		1	1	
INP 280	111	131	1	1		1	1	
INP 300	105	123	1	1		1	1	
INP 320	99	116	1	1		1	1	
INP 340	94	110	1	1		1	1	
INP 360	89	104	1	1		1	1	
INP 380	85	99	1	1		1	1	
INP 400	81	94	1	1		1	1	
INP 450	73	84	1	1		1	1	
INP 500	66	77	1	1		1	1	
INP 550	61	71	1	1		1	1	
INP 600	56	64	1	1		1	1	

			-					
PR0FIL0			FL	ESSI0	NE	СОМ	PRESS	SIONE
IPE	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
IPE 80 A	317	389	1	1	-	1	1	-
IPE 80	270	330	1	1	-	1	1	-
IPE A 100	286	349	1	1	-	1	1	-
IPE 100	247	300	1	1	-	1	1	-
IPE A 120	271	329	1	1	1	1	1	2
IPE 120	230	279	1	1	1	1	1	1
IPE A 140	260	314	1	1	1	1	2	3
IPE 140	215	259	1	1	1	1	1	2
IPE A 160	245	295	1	1	1	1	3	4
IPE 160	200	241	1	1	1	1	1	2
IPE A 180	227	274	1	1	1	2	3	4
IPE 180	188	226	1	1	1	1	2	3
IPE 0 180	168	202	1	1	1	1	1	2
IPE A 200	210	253	1	1	1	2	4	4
IPE 200	176	211	1	1	1	1	2	3
IPE 0 200	158	190	1	1	1	1	1	2
IPE A 220	193	231	1	1	1	2	4	4
IPE 220	165	198	1	1	1	1	2	4
IPE 0 220	149	179	1	1	1	1	2	2
IPE A 240	178	214	1	1	2	2	4	4
IPE 240	153	184	1	1	1	1	2	4
IPE 0 240	139	167	1	1	1	1	2	3
IPE A 270	171	205	1	1	2	3	4	4
IPE 270	147	176	1	1	1	2	3	4
IPE 0 270	127	152	1	1	1	1	2	3
IPE A 300	160	192	1	2	3	3	4	4
IPE 300	139	167	1	1	1	2	4	4
IPE 0 300	121	145	1	1	1	1	3	4
IPE A 330	149	178	1	1	2	3	4	4
IPE 330	131	157	1	1	1	2	4	4
IPE 0 330	114	137	1	1	1	1	3	4
IPE A 360	138	165	1	1	2	4	4	4
IPE 360	122	146	1	1	1	2	4	4
IPE 0 360	107	127	1	1	1	1	3	4
IPE A 400	133	158	1	1	2	4	4	4
IPE 400	116	137	1	1	1	3	4	4
IPE 0 400	103	122	1	1	1	2	3	4
IPE A 450	127	149	1	1	2	4	4	4
IPE 450	110	130	1	1	1	3	4	4
IPE 0 450	94	110	1	1	1	2	4	4
IPE A 500	118	138	1	1	1	4	4	4
IPE 500	104	121	1	1	1	3	4	4
IPE 0 500	89	104	1	1	1	2	4	4
IPE A 550	111		1	1	2			
		129		1		4	4	4
IPE 550	97	113	1		1	4	4	4
IPE 0 550	85	98	1	1	1	2	4	4
IPE A 600	103	119	1	1	2	4	4	4
IPE 600	91	105	1	1	1	4	4	4
IPE 0 600	73	85	1	1	1	2	4	4
750 x 137	101	116	1	2	-	4	4	-
750 x 147	94	109	1	1	2	4	4	4
750 x 173	81	93	1	1	1	4	4	4
750 x 196	72	83	1	1	1	4	4	4

PROFILO			FLESSIONE COMPRESS			IONE		
J	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
J 76 x 76 x 13	142	190	1	1		1	1	
J 76 x 76 x 15	123	166	1	1		1	1	
J 89 x 89 x 19	109	146	1	1		1	1	
J 102 x 44 x 7	263	311	1	1		1	1	
J 102 x 102 x 23	106	141	1	1		1	1	
J 114 x 114 x 27	101	135	1	1		1	1	
J 127 x 76 x 16	158	195	1	1		1	1	
J 127 x 114 x 27	109	143	1	1		1	1	
J 127 x 114 x 29	100	131	1	1		1	1	
J 152 x 127 x 37	92	119	1	1		1	1	
J 203 x 152 x 52	85	108	1	1		1	1	
J 254 x 114 x 37	133	157	1	1		1	1	
J 254 x 203 x 82	68	88	1	1		1	1	

PROFILO			FLESSIONE			COM	PRESS	IONE
PFC	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
PFC 100x50x10	192	231	1	1		1	1	
PFC 125x65x15	168	202	1	1		1	1	
PFC 150x75x18	165	198	1	1		1	1	
PFC 150x90x24	128	158	1	1		1	1	
PFC 180x75x20	168	197	1	1		1	1	
PFC 180x90x26	136	163	1	1		1	1	
PFC 200x75x23	159	184	1	1		1	1	
PFC 200x90x30	129	153	1	1		1	1	
PFC 230x75x26	164	187	1	1		1	2	
PFC 230x90x32	134	156	1	1		1	1	
PFC 260x75x28	169	191	1	1		1	2	
PFC 260x90x35	137	158	1	1		1	1	
PFC 300x90x41	131	148	1	1		1	2	
PFC 300x100x46	121	138	1	1		1	1	
PFC 380x100x54	125	140	1	1		2	3	
PFC 430x100x64	117	129	1	1		1	3	

PROFILO			FL	ESS10	NE	сом	PRESS	SIONE
МС	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
MC 150 x 17,9	161	189	1	1		1	1	
MC 150 x 22,5	132	158	1	1		1	1	
MC 150 x 22,8	135	165	1	1		1	1	
MC 150 x 24,3	123	147	1	1		1	1	
MC 150 x 26,8	115	141	1	1		1	1	
MC 180 x 28,4	122	146	1	1		1	1	
MC 180 x 33,8	104	125	1	1		1	1	
MC 200 x 12,6	282	311	1	1		2	4	
MC 200 x 27,8	136	157	1	1		1	1	
MC 200 x 29,8	127	147	1	1		1	1	
MC 200 x 31,8	122	143	1	1		1	1	
MC 200 x 33,9	115	135	1	1		1	1	
MC 230 x 35,6	120	139	1	1		1	1	
MC 230 x 37,8	113	132	1	1		1	1	
MC 250 x 12,5	342	365	1	1		4	4	
MC 250 x 33	141	161	1	1		1	1	
MC 250 x 37	126	144	1	1		1	1	
MC 250 x 42,4	113	131	1	1		1	1	
MC 250 x 50	96	113	1	1		1	1	
MC 250 x 61,2	79	93	1	1		1	1	
MC 310 x 15,8	322	341	1	1		4	4	
MC 310 x 46	121	137	1	1		1	1	
MC 310 x 52	107	121	1	1		1	1	
MC 310 x 60	93	106	1	1		1	1	
MC 310 x 67	83	95	1	1		1	1	
MC 310 x 74	76	87	1	1		1	1	
MC 330 x 47,3	126	143	1	1		1	1	
MC 330 x 52	115	131	1	1		1	1	
MC 330 x 60	101	115	1	1		1	1	
MC 330 x 74	82	94	1	1		1	1	
MC 460 x 63,5	125	138	1	1		1	3	
MC 460 x 68,2	117	129	1	1		1	2	
MC 460 x 77,2	104	114	1	1		1	1	
MC 460 x 86	93	103	1	1		1	1	

PROFILO			FL	ESS10	NE	сом	PRESS	SIONE
S	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
S 75 x 8,5	195	249	1	1		1	1	
S 75 x 11,2	151	196	1	1		1	1	
S 100 x 11,5	186	232	1	1		1	1	
S 100 x 14,1	153	193	1	1		1	1	
S 130 x 15	175	215	1	1		1	1	
S 150 x 18,6	165	201	1	1		1	1	
S 150 x 25,7	121	149	1	1		1	1	
S 200 x 27,4	146	175	1	1		1	1	
S 200 x 34	117	142	1	1		1	1	
S 250 x 37,8	130	155	1	1		1	1	
S 250 x 52	95	114	1	1		1	1	
S 310 x 47,3	122	143	1	1		1	2	
S 310 x 52	111	131	1	1		1	1	
S 310 x 60,7	96	113	1	1		1	1	
S 310 x 74	79	94	1	1		1	1	
S 380 x 64	111	128	1	1		1	3	
S 380 x 74	95	111	1	1		1	1	
S 460 x 81,4	103	117	1	1		2	3	
S 460 x 104	81	93	1	1		1	1	
S 510 x 98,2	94	107	1	1		2	3	
S 510 x 112	83	95	1	1		1	2	
S 510 x 128	74	85	1	1		1	1	
S 510 x 143	67	77	1	1		1	1	
S 610 x 119	92	104	1	1		4	4	
S 610 x 134	82	93	1	1		2	3	
S 610 x 149	74	84	1	1		1	2	
S 610 x 158	72	82	1	1		2	3	
S 610 x 180	63	72	1	1		1	1	

PROFILO			FLESSIONE			сомі	PRESS	SIONE		
U	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460		
U 40 x 20	273	328	1	1		1	1			
U 50 x 25	254	305	1	1		1	1			
U 60 x 30	232	279	1	1		1	1			
U 65 x 42	190	237	1	1		1	1			

PROFILO			FL	ESSI0	NE	СОМ	PRESS	SIONE
UB	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
UB 127 x 76 x 13	200	246	1	1	-	1	1	-
UB 152 x 89 x 16	194	237	1	1	-	1	2	-
UB 178 x 102 x 19	188	230	1	1	1	1	2	4
UB 203 x 102 x 23	173	207	1	1	1	1	3	4
UB 203 x 133 x 25	169	210	1	2	3	1	2	4
UB 203 x 133 x 30	143	178	1	1	1	1	2	2
UB 254 x 102 x 22	218	254	1	1	-	3	4	-
UB 254 x 102 x 25	192	224	1	1	-	2	4	-
UB 254 x 102 x 28	173	201	1	1	-	2	4	-
UB 254 x 146 x 31	164	200	1	2	-	2	4	-
UB 254 x 146 x 37	140	171	1	1	-	2	4	-
UB 254 x 146 x 43	122	149	1	1	-	1	2	-
UB 305 x 102 x 25	225	257	1	1	-	4	4	-
UB 305 x 102 x 28	200	229	1	1	-	4	4	-
UB 305 x 102 x 33	174	198	1	1	-	3	4	-
UB 305 x 127 x 37	155	181	1	1	-	2	4	-
UB 305 x 127 x 42	138	162	1	1	-	2	3	-
UB 305 x 127 x 48	122	143	1	1	-	1	2	-
UB 305 x 165 x 40	150	183	1	1	-	4	4	-
UB 305 x 165 x 46	133	161	1	1	-	3	4	-
UB 305 x 165 x 54	115	139	1	1	-	2	3	-
UB 356 x 127 x 33	195	225	1	1	-	4	4	-
UB 356 x 127 x 39	167	193	1	1	-	4	4	-
UB 356 x 171 x 45	152	182	1	2	-	4	4	-
UB 356 x 171 x 51 UB 356 x 171 x 57	136 122	162 146	1	1	-	3	4	-
UB 356 x 171 x 67	105	126	1	1	-	2	4	-
UB 406 x 140 x 39	189	217	1	2	-	4	4	_
UB 406 x 140 x 46	162	186	1	1		4	4	_
UB 406 x178 x 54	143	168	1	2	3	4	4	4
UB 406 x 178 x 60	129	153	1	1	1	4	4	4
UB 406 x 178 x 67	117	138	1	1	1	3	4	4
UB 406 x 178 x 74	106	125	1	1	1	2	4	4
UB 457 x 152 x 52	158	181	1	1	2	4	4	4
UB 457 x 152 x 60	139	159	1	1	1	4	4	4
UB 457 x 152 x 67	125	143	1	1	1	4	4	4
UB 457 x152 x 74	114	130	1	1	1	4	4	4
UB 457 x 152 x 82	104	119	1	1	1	3	4	4
UB 457 x 191 x 67	128	150	1	1	2	4	4	4
UB 457 x 191 x 74	117	137	1	1	1	4	4	4
UB 457 x 191 x 82	106	125	1	1	1	3	4	4
UB 457 x 191 x 89	98	115	1	1	1	3	4	4
. , , ,								

PROFILO			FL	ESSI0	NE	СОМ	PRESS	SIONE
UB	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
UB 457 x 191 x 98	90	105	1	1	1	2	4	4
UB 533 x 210 x 82	121	141	1	1	3	4	4	4
UB 533 x 210 x 92	109	126	1	1	1	4	4	4
UB 533 x 210 x 101	100	116	1	1	1	4	4	4
UB 533 x210 x109	93	108	1	1	1	3	4	4
UB 533 x 210 x 122	84	97	1	1	1	2	4	4
UB 610 x 229 x 101	111	129	1	1	2	4	4	4
UB 610 x 229 x 113	100	116	1	1	1	4	4	4
UB 610 x 229 x 125	91	106	1	1	1	4	4	4
UB 610 x 229 x 140	82	95	1	1	1	3	4	4
UB 610 x 305 x 149	80	97	1	1	2	4	4	4
UB 610 x 305 x 179	68	81	1	1	1	3	4	4
UB 610 x 305 x 238	52	62	1	1	1	1	2	3
UB 686 x 254 x 125	101	117	1	1	2	4	4	4
UB 686 x 254 x 140	91	105	1	1	1	4	4	4
UB 686 x 254 x 152	84	97	1	1	1	4	4	4
UB 686 x 254 x 170	76	88	1	1	1	4	4	4
UB 762 x 267 x 147	95	109	1	1	2	4	4	4
UB 762 x 267 x173	81	93	1	1	1	4	4	4
UB 762 x 267 x 197	72	83	1	1	1	4	4	4
UB 838 x 292 x 176	88	101	1	1	2	4	4	4
UB 838 x 292 x 194	80	92	1	1	2	4	4	4
UB 838 x 292 x 226	69	79	1	1	1	4	4	4
UB 914 x 305 x 201	82	94	1	1	-	4	4	-
UB 914 x 305 x 224	74	85	1	1	2	4	4	4
UB 914 x 305 x 253	66	76	1	1	1	4	4	4
UB 914 x 305 x 289	59	67	1	1	1	4	4	4
UB 914 x 419 x 343	51	61	1	1	1	3	4	4
UB 914 x 419 x 388	46	54	1	1	1	2	4	4
UB1016 x305 x222	79	90	1	1	-	4	4	-
UB1016 x 305 x 249	71	81	1	1	2	4	4	4
UB1016 x 305 x 272	66	74	1	1	2	4	4	4
UB1016 x 305 x 314	58	65	1	1	1	4	4	4
UB1016 x 305 x 349	52	59	1	1	1	3	4	4
UB1016 x 305 x 393	47	53	1	1	1	2	4	4
UB1016 x305 x415	44	50	1	1	1	2	3	4
UB1016 x 305 x 438	42	48	1	1	1	1	3	4
UB1016 x 305 x 494	38	43	1	1	1	1	2	3
UB1016 x 305 x 584	33	37	1	1	1	1	1	2

PROFILO			FL	ESS10	NE	СОМІ	PRESS	SIONE			
UBP	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460			
UBP 203x203x45	106	142	2	3	4	2	3	4			
UBP 203x203x54	90	120	1	3	3	1	3	3			
UBP 254x254x63	94	126	3	3	4	3	3	4			
UBP 254x254x71	84	112	2	3	4	2	3	4			
UBP 254x254x85	71	95	1	3	3	1	3	3			
UBP 305x305x79	90	121	3	4	4	3	4	4			
UBP 305x305x88	81	109	3	4	4	3	4	4			

PROFILO			FLESSIONE			СОМ	PRESSIONE		
UBP	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460	
UBP 305x305x95	76	101	3	3	4	3	3	4	
UBP 305x305x110	66	88	2	3	3	2	3	3	
UBP 305x305x126	58	78	1	2	3	1	2	3	
UBP 305x305x149	50	67	1	1	2	1	1	2	
UBP 305x305x186	41	55	1	1	1	1	1	1	
UBP 305x305x223	35	47	1	1	1	1	1	1	
UBP 356x368x109	77	103	3	4	4	3	4	4	
UBP 356x368x133	64	86	3	3	4	3	3	4	
UBP 356x368x152	56	76	2	3	3	2	3	3	
UBP 356x368x174	50	67	1	3	3	1	3	3	

PROFILO			FLESSIONE			COMPRESSIONE		
UPE	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
UPE 80	209	258	1	1		1	1	
UPE 100	204	248	1	1		1	1	
UPE 120	195	233	1	1		1	1	
UPE 140	187	223	1	1		1	1	
UPE 160	180	212	1	1		1	1	
UPE 180	173	203	1	1		1	1	
UPE 200	165	193	1	1		1	1	
UPE 220	155	180	1	1		1	1	
UPE 240	148	171	1	1		1	1	
UPE 270	142	163	1	1		1	2	
UPE 300	124	141	1	1		1	1	
UPE 330	113	128	1	1		1	1	
UPE 360	107	121	1	1		1	1	
UPE 400	100	112	1	1		1	1	

	<i></i>							
PROFILO			FL	ESSI0	NE	COM	PRESS	IONE
UC	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
UC 152 x 152 x 23	156	208	3	3	4	3	3	4
UC 152 x 152 x 30	122	162	1	1	3	1	1	3
UC 152 x 152 x 37	101	134	1	1	1	1	1	1
UC 203 x 203 x 46	104	139	1	3	3	1	3	3
UC 203 x 203 x 52	93	124	1	2	3	1	2	3
UC 203 x 203 x 60	82	109	1	1	2	1	1	2
UC 203 x 203 x 71	71	93	1	1	1	1	1	1
UC 203 x 203 x 86	60	79	1	1	1	1	1	1
UC 254 x 254 x 73	82	109	1	3	3	1	3	3
UC 254 x 254 x 89	69	91	1	1	2	1	1	2
UC 254 x 254 x 107	58	77	1	1	1	1	1	1
UC 254 x 254 x 132	48	64	1	1	1	1	1	1
UC 254 x 254 x 167	40	52	1	1	1	1	1	1
UC 305 x 305 x 97	75	99	1	3	3	1	3	3
UC 305 x 305 x 118	62	83	1	2	3	1	2	3
UC 305 x 305 x 137	54	72	1	1	1	1	1	1
UC 305 x 305 x 158	48	63	1	1	1	1	1	1
UC 305 x 305 x 198	39	52	1	1	1	1	1	1
UC 305 x 305 x 240	33	44	1	1	1	1	1	1
UC 305 x 305 x 283	29	38	1	1	1	1	1	1
UC 356 x 368 x 129	66	88	2	3	3	2	3	3
UC 356 x 368 x 153	56	75	1	2	3	1	2	3
UC 356 x 368 x 177	49	66	1	1	2	1	1	2
UC 356 x 368 x 202	44	58	1	1	1	1	1	1
UC 356 x 406 x 235	39	52	1	1	1	1	1	1
UC 356 x 406 x 287	32	43	1	1	1	1	1	1
UC 356 x 406 x 340	28	37	1	1	1	1	1	1
UC 356 x 406 x 393	25	33	1	1	1	1	1	1
UC 356 x 406 x 467	22	29	1	1	1	1	1	1
UC 356 x 406 x 551	19	25	1	1	1	1	1	1
UC 356 x 406 x 634	17	22	1	1	1	1	1	1

PROFILO			FLESSIONE			сомі	PRESSIONE		
UPN	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460	
UPN 80	186	227	1	1		1	1		
UPN 100	185	222	1	1		1	1		
UPN 120	174	206	1	1		1	1		
UPN 140	167	196	1	1		1	1		
UPN 160	160	188	1	1		1	1		
UPN 180	154	179	1	1		1	1		
UPN 200	148	171	1	1		1	1		
UPN 220	139	160	1	1		1	1		
UPN 240	134	154	1	1		1	1		
UPN 260	126	145	1	1		1	1		
UPN 280	123	141	1	1		1	1		
UPN 300	119	136	1	1		1	1		
UPN 320	98	111	1	1		1	1		
UPN 350	103	116	1	1		1	1		
UPN 380	107	120	1	1		1	1		
UPN 400	99	111	1	1		1	1		

PROFILO			FLESSIONE			СОМ	PRESSIONE		
W	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460	
W 100 x 100 x 19.3	127	169	1	1	-	1	1	-	
W 130 x 130 x 23.8	126	168	1	1	-	1	1	-	
W 130 x 130 x 28.1	109	144	1	1	-	1	1	-	
W 150 x 100 x 13.5	231	289	1	3	-	1	3	-	
W 150 x 100 x 18.0	175	219	1	1	-	1	1	-	
W 150 x 100 x 24.0	138	172	1	1	-	1	1	-	
W 150 x 150 x 22.5	160	213	3	3	4	3	3	4	
W 150 x 150 x 29.8	123	164	1	2	3	1	2	3	
W 150 x 150 x 37.1	101	134	1	1	1	1	1	1	

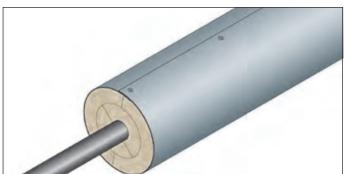
VAEOIII DI								
PROFILO			FL	ESSI0	NE	СОМ	PRESS	SIONE
W	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
W 200 x 100 x 15.0	261	313	1	3	-	3	4	-
W 200 x 100 x 19.3	204	245	1	1	-	1	2	-
W 200 x 100 x 22.5	179	215	1	1	-	1	2	-
W 200 x 135 x 26.6	161	200	1	1	3	1	2	4
W 200 x 135 x 31.3	139	172	1	1	1	1	2	2
W 200 x 165 x 35.9	124	160	1	1	3	1	1	3
W 200 x 165 x 41.7	108	140	1	1	1	1	1	1
W 200 x 200 x 46.1	104	139	1	3	3	1	3	3
W 200 x 200 x 52	93	123	1	1	3	1	1	3
W 200 x 200 x 59	83	110	1	1	2	1	1	2
W 200 x 200 x 71	70	93	1	1	1	1	1	1
W 200 x 200 x 86	59	78	1	1	1	1	1	1
W 200 x 200 x 100	53	69	1	1	1	1	1	1
W 250 x 100 x 17.9	264	308	1	3	-	4	4	-
W 250 x 100 x 22.3	213	248	1	1	-	3	4	-
W 250 x 100 x 25.3	190	222	1	1	_	2	4	-
W 250 x 100 x 28.4	172	200	1	1	_	2	4	-
W 250 x 145 x 32.7	159	194	1	1	_	2	4	-
W 250 x 145 x 38.5	136	166	1	1	_	2	3	_
W 250 x 145 x 44.8	119	144	1	1	_	1	2	_
W 250 x 200 x 49.1	111	144	1	3	_	1	3	_
W 250 x 200 x 58	95	123	1	1	_	1	1	_
W 250 x 200 x 67	84	108	1	1		1	1	_
W 250 x 250 x 73	82	109	1	2	3	1	2	3
W 250 x 250 x 80	75	100	1	2	3	1	2	3
W 250 x 250 x 89	68	90	1	1	2	1	1	2
W 250 x 250 x 101	61	81	1	1	1	1	1	1
W 250 x 250 x 101	55	72	1	1	1	1	1	1
W 250 x 250 x 131	49	64	1	1	1	1	1	1
W 250 x 250 x 149	44	57	1	1	1	1	1	1
W 250 x 250 x 167	40	52	1	1	1	1	1	1
W 310 x 100 x 21.0	263	301	1	2	-	4	4	-
W 310 x 100 x 23.8	234	267	1	1	_	4	4	_
W 310 x 100 x 28.3	200	228	1	1	_	4	4	_
W 310 x 100 x 32.7	174	198	1	1	_	3	4	_
W 310 x 165 x 38.7	158	192	1	2	_	4	4	_
W 310 x 165 x 44.5	139	168	1	1	_	3	4	_
W 310 x 165 x 52	120	145	1	1	-	2	4	-
W 310 x 200 x 60	107	133	1	1	_	1	3	-
W 310 x 200 x 67	96	120	1	1	_	1	2	-
W 310 x 200 x 74	87	109	1	1	_	1	1	_
W 310 x 250 x 79	86	111	1	2	_	1	2	_
W 310 x 250 x 79	79	103	1	1		1	2	_
W 310 x 310 x 97	75	99	1	3	3	1	3	3
W 310 x 310 x 97	68	91	1	3	3	1	3	3
W 310 x 310 x 107	62	83	1	2	3	1	2	3
W 310 x 310 x 117	57	76	1	1	2	1	1	2
W 310 x 310 x 129	52	69	1	1	1	1	1	1
W 310 x 310 x 143	48	64	1	1	1	1	1	1
W 310 x 310 x 179	43	57	1	1	1	1	1	1
	-		1	1	1	1	1	1
W 310 x 310 x 202	39	51	-					
W 310 x 310 x 226	35	46	1	1	1	1	1	1
W 310 x 310 x 253	32	42	1	1	1	1	1	1
W 310 x 310 x 283	29	38	1	1	1	1	1	1

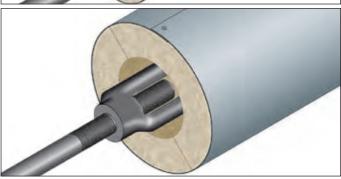
PROFILO			FL	ESSIO	NE	СОМ	COMPRESSIONE			
				1 -			I -			
W	(m-1)	(m-1)	S235				S355			
W 310 x 310 x 313	27	35	1	1	1	1	1	1		
W 310 x 310 x 342	25	32	1	1	1	1	1	1		
W 360 x 130 x 32.9	198	228	1	1	-	4	4	-		
W 360 x 130 x 39.0	167	193	1	1	-	4	4	-		
W 360 x 170 x 44	153	183	1	2	-	4	4	-		
W 360 x 170 x 51	136	163	1	1	-	4	4	-		
W 360 x 170 x 57.8	123	147	1	1	-	3	4	-		
W 360 x 200 x 64	110	135	1	1	-	2	4	-		
W 360 x 200 x 72	99	122	1	1	-	2	3	-		
W 360 x 200 x 79+	90	111	1	1	-	1	2	-		
W 360 x 250 x 91	83	105	1	1	-	1	2	-		
W 360 x 250 x 101	75	95	1	1	-	1	2	-		
W 360 x 250 x 110	70	88	1	1	-	1	1	-		
W 360 x 250 x 122	63	80	1	1	-	1	1	-		
W 360 x 370 x 134	63	85	2	3	3	2	3	3		
W 360 x 370 x 147	58	78	1	3	3	1	3	3		
W 360 x 370 x 162	53	71	1	2	3	1	2	3		
W 360 x 370 x 179	49	65	1	1	2	1	1	2		
W 360 x 370 x 196	45	60	1	1	1	1	1	1		
W 360 x 410 x 216	42	56	1	1	1	1	1	1		
W 360 x 410 x 237	38	52	1	1	1	1	1	1		
W 360 x 410 x 262	35	47	1	1	1	1	1	1		
W 360 x 410 x 287	32	43	1	1	1	1	1	1		
W 360 x 410 x 314	30	40	1	1	1	1	1	1		
W 360 x 410 x 347	28	37	1	1	1	1	1	1		
W 360 x 410 x 382	25	34	1	1	1	1	1	1		
W 360 x 410 x 421	23	31	1	1	1	1	1	1		
W 360 x 410 x 463	22	29	1	1	1	1	1	1		
W 360 x 410 x 509	20	27	1	1	1	1	1	1		
W 360 x 410 x 551	19	25	1	1	1	1	1	1		
W 360 x 410 x 592	18	23	1	1	1	1	1	1		
W 360 x 410 x 634	17	22	1	1	1	1	1	1		
W 360 x 410 x 677	16	21	1	1	1	1	1	1		
W 360 x 410 x 744	15	20	1	1	1	1	1	1		
W 360 x 410 x 744	14	18	1	1	1	1	1	1		
W 360 x 410 x 818	13	17	1	1	1	1	1	1		
W 360 x 410 x 990	12	16	1	1	1	1	1	1		
W 360 x 410 x 990 W 360 x 410 x 1086			1	1		1	1			
	11	15	1	1	1	4	4	1		
W 410 x 140 x 38.8	189	217	1	1	_	4	4	-		
W 410 x 140 x 46.1	161	185			-	<u> </u>		-		
W 410 x 180 x 53	145	171	1	1	3	4	4	4		
W 410 x 180 x 60	131	154	1	1	1	4	4	4		
W 410 x 180 x 67	116	137	1	1	1	3	4	4		
W 410 x 180 x 75	106	125	1	1	1	2	4	4		
W 410 x 180 x 85	94	110	1	1	1	2	3	4		
W 410 x 260 x 100	86	106	1	1	-	2	4	-		
W 410 x 260 x 114	76	93	1	1	-	1	3	-		
W 410 x 260 x 132	66	82	1	1	-	1	2	-		
W 410 x 260 x 149	59	73	1	1	-	1	1	-		
W 460 x 150 x 52	159	182	1	1	2	4	4	4		
W 460 x 150 x 60	140	160	1	1	1	4	4	4		
W 460 x 150 x 68	123	141	1	1	1	4	4	4		
W 460 x 190 x 74	117	137	1	1	1	4	4	4		
W 460 x 190 x 82	106	125	1	1	1	3	4	4		

PROFILO			FL	ESSI0	NE	СОМ	PRESS	SIONE
W	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460
W 460 x 190 x 89	98	115	1	1	1	3	4	4
W 460 x 190 x 97	91	107	1	1	1	2	4	4
W 460 x 190 x 106	84	99	1	1	1	1	3	4
W 460 x 280 x 113	84	103	1	1	-	2	4	-
W 460 x 280 x 128	74	92	1	1	-	2	3	-
W 460 x 280 x 144	67	82	1	1	-	1	2	-
W 460 x 280 x 158	62	76	1	1	-	1	2	-
W 460 x 280 x 177	55	68	1	1	-	1	1	-
W 460 x 280 x 193	51	63	1	1	-	1	1	-
W 460 x 280 x 213	47	58	1	1	-	1	1	-
W 460 x 280 x 235	43	53	1	1	-	1	1	-
W 460 x 280 x 260	39	48	1	1	-	1	1	-
W 530 x 165 x 66	145	165	1	1	-	4	4	-
W 530 x 165 x 74	128	146	1	1	-	4	4	-
W 530 x 165 x 85	115	130	1	1	-	4	4	-
W 530 x 210 x 92	108	126	1	1	-	4	4	-
W 530 x 210 x 101	99	115	1	1	-	4	4	-
W 530 x 210 x 109	93	108	1	1	-	3	4	-
W 530 x 210 x 123	83	96	1	1	-	2	4	-
W 530 x 210 x 138	74	87	1	1	-	1	3	-
W 530 x 315 x 150	73	89	1	1	_	2	4	_
W 530 x 315 x 165	67	82	1	1	_	2	3	_
W 530 x 315 x 182	61	75	1	1	_	1	3	_
W 530 x 315 x 196	57	69	1	1	_	1	2	_
W 530 x 315 x 219	52	63	1	1	_	1	1	_
W 530 x 315 x 248	46	56	1	1	_	1	1	_
W 530 x 315 x 272	42	52	1	1	_	1	1	_
W 530 x 315 x 300	39	47	1	1	_	1	1	_
W 610 x 180 x 82	132	149	1	1	_	4	4	_
W 610 x 180 x 92	118	133	1	1	_	4	4	_
W 610 x 230 x 101	110	128	1	1		4	4	
W 610 x 230 x 101	100	116	1	1	_	4	4	-
W 610 x 230 x 115	91	105	1	1	1	4	4	4
W 610 x 230 x 123	82	95	1	1	1	3	4	4
W 610 x 230 x 140	75	87	1	1	1	3	4	4
W 610 x 325 x 155	78	95	1	2	3	4	4	4
W 610 x 325 x 174	70	85	1	1	2	3	4	4
		76	1	1	1		4	4
W 610 x 325 x 195	63		1	1		2	-	4
W 610 x 325 x 217	57	69	-	1	1	2	3	
W 610 x 325 x 241	53	64	1	-	-	<u> </u>	3	4
W 610 x 325 x 262	48	58	1	1	1	1	2	3
W 610 x 325 x 285	45	54	1	1	1	1	1	2
W 610 x 325 x 341	38	46	1	1	1	1	1	1
W 610 x 325 x 415	32	38	1	1	1	1	1	1
W 610 x 325 x 455	30	36	1	1	1	1	1	1
W 610 x 325 x 498	27	33	1	1	1	1	1	1
W 610 x 325 x 551	25	30	1	1	1	1	1	1
W 690 x 250 x 125	101	116	1	1	-	4	4	-
W 690 x 250 x 140	91	105	1	1	-	4	4	-
W 690 x 250 x 152	84	97	1	1	1	4	4	4
W 690 x 250 x 170	76	88	1	1	1	4	4	4
W 690 x 250 x 192	68	78	1	1	1	3	4	4
W 760 x 265 x 147	94	109	1	1	-	4	4	-
W 760 x 265 x 161	87	100	1	1	1	4	4	4

						COMPRESSIONE				
PR0FIL0			FL	ESSI0	NE	COMI	PRESS	IONE		
W	(m-1)	(m-1)	S235	S355	S460	S235	S355	S460		
W 760 x 265 x 173	81	93	1	1	1	4	4	4		
W 760 x 265 x 185	76	88	1	1	1	4	4	4		
W 760 x 265 x 196	72	83	1	1	1	4	4	4		
W 760 x 265 x 220	65	74	1	1	1	3	4	4		
W 840 x 295 x 176	88	101	1	1	-	4	4	-		
W 840 x 295 x 193	80	92	1	1	2	4	4	4		
W 840 x 295 x 210	74	85	1	1	1	4	4	4		
W 840 x 295 x 226	69	79	1	1	1	4	4	4		
W 840 x 295 x 251	63	72	1	1	1	4	4	4		
W 920 x 310 x 201	82	94	1	1	-	4	4	-		
W 920 x 310 x 223	74	85	1	1	2	4	4	4		
W 920 x 310 x 238	70	80	1	1	1	4	4	4		
W 920 x 310 x 253	66	76	1	1	1	4	4	4		
W 920 x 310 x 271	62	71	1	1	1	4	4	4		
W 920 x 310 x 289	59	67	1	1	1	4	4	4		
W 920 x 310 x 313	55	62	1	1	1	3	4	4		
W 920 x 420 x 345	52	62	1	1	1	4	4	4		
W 920 x 420 x 368	49	58	1	1	1	3	4	4		
W 920 x 420 x 390	46	55	1	1	1	3	4	4		
W 920 x 420 x 420	43	51	1	1	1	2	4	4		
W 920 x 420 x 449	41	48	1	1	1	2	4	4		
W 920 x 420 x 491	37	44	1	1	1	1	3	4		
W 920 x 420 x 537	35	41	1	1	1	1	2	3		
W 920 x 420 x 588	32	37	1	1	1	1	1	2		
W 920 x 420 x 656	29	34	1	1	1	1	1	2		
W 920 x 420 x 725	26	31	1	1	1	1	1	1		
W 920 x 420 x 787	25	29	1	1	1	1	1	1		
W 920 x 420 x 970	20	24	1	1	1	1	1	1		
W 1000 x 300 x 222	79	90	1	1	_	4	4	_		
W 1000 x 300 x 249	71	81	1	1	2	4	4	4		
W 1000 x 300 x 272	66	74	1	1	2	4	4	4		
W 1000 x 300 x 272	57	65	1	1	1	4	4	4		
W 1000 x 300 x 350	52	59	1	1	1	3	4	4		
W 1000 x 300 x 393	47	53	1	1	1	2	4	4		
W 1000 x 300 x 333	44	50	1	1	1	2	3	4		
W 1000 x 300 x 413	42	48	1	1	1	1	3	4		
W 1000 x 300 x 494	38	43	1	1	1	1	2	3		
W 1000 x 300 x 494 W 1000 x 300 x 584	33	37	1	1	1	1	1	2		
W 1000 x 300 x 384 W 1000 x 400 x 296	63	73	1	1	2	4	4	4		
W 1000 x 400 x 290 W 1000 x 400 x 321	58	68	1	1	2	4	4	4		
W 1000 x 400 x 321 W 1000 x 400 x 371	51	59	1	1	1	4	4	4		
	46	54	1	1	1	_				
W 1000 x 400 x 412			_			3	4	4		
W 1000 x 400 x 443	43	50	1	1	1	2	4	4		
W 1000 x 400 x 483	40	46	1	1	1	2	4	4		
W 1000 x 400 x 539	36	42	1	1	1	1	2	4		
W 1000 x 400 x 554	35	41	1	1	1	1	2	3		
W 1000 x 400 x 591	33	38	1	1	1	1	2	3		
W 1000 x 400 x 642	31	36	1	1	1	1	1	2		
W 1000 x 400 x 748	27	31	1	1	1	1	1	1		
W 1000 x 400 x 883	23	27	1	1	-	1	1	-		
W 1100 x 400 x 343	59	68	1	1	2	4	4	4		
W 1100 x 400 x 390	52	60	1	1	1	4	4	4		
W 1100 x 400 x 433	47	55	1	1	1	4	4	4		
W 1100 x 400 x 499	42	48	1	1	1	2	4	4		

RESISTENZA AL FUOCO DI TIRANTI


Secondo l'ordinamento europeo riguardante le prove di resistenza al fuoco, non è attualmente disponibile un protocollo di prova per la realizzazione di test su elementi strutturali in acciaio sottoposti a trazione ed in particolare per i tiranti in acciaio. Poichè questo elemento costruttivo è ancora molto diffuso in Italia, si è creata l'esigenza di poter collaudare i relativi sistemi protettivi con una metodologia di prova che, per ispirazione a basi tecniche, fosse la più vicina possibile allo spirito delle norme Europee.


Per questo si è scelto di operare utilizzando i sistemi di prova, taratura forno e rilevamento delle temperature in accordo alla norma EN 1363-1 e quelli di valutazione dei risultati, escludendo le interpolazioni, riportati nello standard UNI EN 13381-4 (metodi di prova per la deteminazione del contributo alla resistenza al fuoco di elementi strutturali - Protezione applicata ad elementi di acciaio). Tale approccio è in linea con lo spirito del DM 16 febbraio 2007.

La valutazione dei risultati ha portato all'elaborazione di una tabella utilizzabile dai professionisti abilitati ex 818 per la redazione dei modelli CERT REI. La valutazione non rappresenta un Fascicolo Tecnico come previsto dal DM 16 febbraio 2007, punto B.8, ma si configura come una valutazione analitica di risultati sperimentali di prove eseguiti in accordo alla norma EN 1363-1.

COPPELLE PER TIRANTI E COPRITIRANTI "T-REX"

DESCRIZIONE DI CAPITOLATO

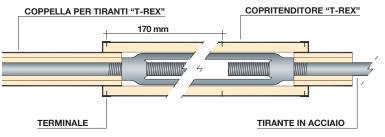
Fornitura e posa in opera di protezione di tiranti in acciaio con resistenza al fuoco R 30/180 realizzata con COPPELLE PER TIRANTI "T-REX" costituite da feltro in fibre ceramiche biosolubili additivate con miscele di ossido di calcio di silicio e di magnesio rivestite con lamierino in acciaio zincato

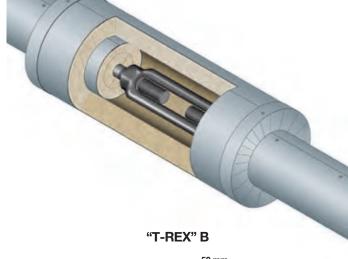
REAZIONE AL FUOCO: A1 RESISTENZA AL FUOCO: R 30/180

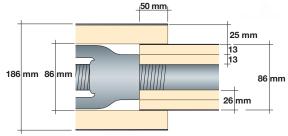
- Supporto: tiranti in acciaio fino diametro massimo 34 mm
- Rivestimento protettivo: COPPELLA PER TIRANTI "T-REX"
- Fissaggio: con viti autoperforanti 4,2 x 13 mm, poste a passo 170 mm
- Finitura: prodotto finito

Rapporto di prova: I.G. 302364 - 25/01/2013 Rapporto di valutazione: CP-T REX - 10/2013

Norma di prova: EN 1363-1*

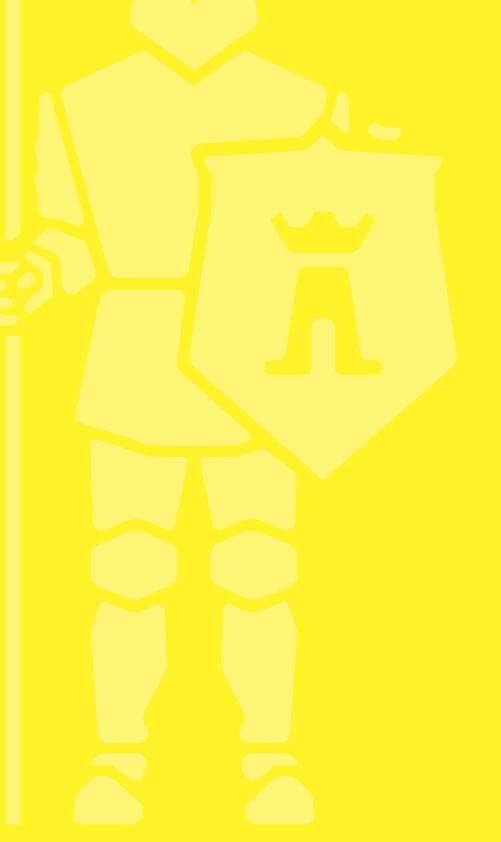

spessore 0,25 mm. Le coppelle saranno applicate con viti autoperforanti fosfatate poste a passo 170 mm. Compresi appositi copritenditori "T-REX". Per le modalità di applicazione si veda apposito "manuale di posa".


TEMPERATURA CRITICA (°C)	200	250	300	350	400	450	500	550
Allungamento (mm/m)	2,32	3,01	3,72	4,45	5,20	5,97	6,76	7,57
"T-REX" A (spessore 13 mm)	R 30	R 30	R 60					
"T-REX" B (spessore 26 mm)	R 60	R 90	R 90	R 120				
"T-REX" C (spessore 50 mm)	R 120	R 120	R 180					


^{*} NOTA: Attualmente non è disponibile una norma di prova per gli elementi sottoposti a trazione (tiranti) pertanto è stata elaborata una metodologia di prova in accordo alla EN 1363-1, in complemento a una valutazione effettuata ai sensi della EN/V 13381-4.

APPLICAZIONE

Aprire leggermente il guscio metallico con il materiale isolante e inserire il tirante, stringere il guscio metallico ed avvitare le viti autoperforanti a passo 170 mm sui fori predisposti per fare scorrere la coppella da un lato. Prendere la successiva coppella, inserire il tirante e comprimere il materiale isolante verso la coppella già montata in modo che con un leggero scorrimento del guscio metallico si sormonti con lo stesso la coppella precedentemente montata. A questo punto mettere la vite autoperforante in modo che sia la quarta della prima coppella e la prima della seconda; seguire la stessa procedura per le successive coppelle. In prossimità del tenditore avvicinare le coppelle del tirante il più possibile allo stesso sui due lati, poi allargare il copritenditore in modo da avvolgere il tenditore e sormontare le coppelle, stringere il copritenditore ed avvitare la vite autoperforante nella perforatura centrale. Montare sui due lati del copritenditore il terminale in alluminio e fissarlo con le viti autoperforanti nelle preforature alle due estremità del copritenditore.



PROTEZIONI STRUTTURALI

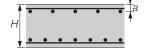
CEMENTO ARMATO

COMPORTAMENTO DEL CEMENTO ARMATO AL FUOCO

Il calcestruzzo possiede un buon comportamento in caso di incendio; la presenza di acqua e la bassa conducibilità termica rallentano il riscaldamento delle sezioni. Queste ultime, inoltre, presentano spessori elevati, quindi il riscaldamento complessivo risulta ridotto anche per esposizioni al fuoco di lunga durata. Nonostante ciò anche per le strutture in cemento armato sono necessarie verifiche puntuali di resistenza al fuoco che tengano conto del riscaldamento e del comportamento delle barre di armatura.

I meccanismi di collasso possono essere diversi: cedimento per flessione, per taglio, cedimento degli appoggi, ecc. Nella maggior parte dei casi la perdita della capacità portante è imputabile alla perdita di resistenza dell'acciaio d'armatura, soprattutto quando, in fase di progetto, non si sia tenuto conto esplicitamente dell'azione del fuoco e non si siano opportunamente sovradimensionati i copriferri. Il cedimento per crisi del calcestruzzo è più raro, in quanto generalmente gli spessori sono sufficientemente elevati da consentire agli strati più interni della sezione resistente un riscaldamento più graduale, facendo sì che la perdita di resistenza a compressione avvenga in tempi posticipati rispetto al cedimento delle armature. Ne risulta come siano maggiormente vulnerabili gli elementi con solo armatura superficiale o quelli molto snelli, che meno possono beneficiare della ridotta conduttività termica del calcestruzzo.

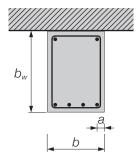
METODI PER LA DETERMINAZIONE DELLE CLASSI DI RESISTENZA AL FUOCO "R"


Dal punto di vista normativo, il D.M. 16/02/2007 specifica che la resistenza al fuoco di una struttura portante in calcestruzzo può essere valutata in base al risultato di:

- confronti con tabelle
- calcoli

CLASSIFICAZIONE IN BASE AL CONFRONTO CON TABELLE:

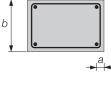
Il D.M. 16 febbraio 2007 fornisce tabelle che possono essere utilizzate per la verifica della resistenza al fuoco delle strutture di calcestruzzo armato relative a travi, pilastri, pareti e solai in calcestruzzo armato ordinario e precompresso. Tali tabelle (appendice D.5 e D.6) sono il risultato di campagne sperimentali e di elaborazioni numeriche, contengono valori cautelativi e non consentono estrapolazioni o interpolazioni tra gli stessi.

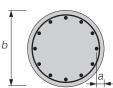

SOLETTE IN C.A. – (Tab. D.5.1) La tabella seguente riporta i valori minimi (mm) dello spessore totale **H** di solette e solai, della distanza **a** dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito **R** per le classi indicate.

Classe	Solette piene con armatura monodirezionale
R 30	H = 80 / a = 10
R 60	H = 120 / a = 20
R 90	H = 120 / a = 30
R 120	H = 160 / a = 40
R 180	H = 200 / a = 55
R 240	H = 240 / a = 65

I valori di "a" devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di "a" di 15 mm. In presenza di intonaco i valori di "H" e "a" ne devono tenere conto nella seguente maniera: 10 mm di intonaco normale (definizione in D.4.1) equivale a 10 mm di calcestruzzo; 10 mm di intonaco protettivo antincendio (definizione in D.4.1) equivale a 20 mm di calcestruzzo. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

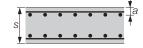
TRAVI IN C.A. – (Tab. D.6.1) La tabella seguente riporta i valori minimi (mm) della larghezza $\bf b$ della sezione, della distanza $\bf a$ dall'asse delle armature alla superficie esposta e della larghezza d'anima $\bf b_w$ di travi con sezione a larghezza variabile sufficienti a garantire il requisito $\bf R$ per le classi indicate di travi semplicemente appoggiate. Per travi con sezione a larghezza variabile $\bf b$ è la larghezza in corrispondenza della linea media delle armature tese.


Classe	Combinazioni possib	oili di "b" e "a"			b _w
R 30	b = 80 / a = 25	120 / 20	160 / 15	200 / 15	80
R 60	b = 120 / a = 40	160 / 35	200 / 30	300 / 25	100
R 90	b = 150 / a = 55	200 / 45	300 / 40	400 / 35	100
R 120	b = 200 / a = 65	240 / 60	300 / 55	500 / 50	120
R 180	b = 240 / a = 80	300 / 70	400 / 65	600 / 60	140
R 240	b = 280 / a = 90	350 / 80	500 / 75	700 / 70	160


I valori di "a" devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di "a" di 15 mm. In presenza di intonaco i valori di "b" e "a" ne possono tenere conto nella maniera indicata nella tabella D.5.1. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

PILASTRI IN C.A. – (Tab. D.6.2) La tabella seguente riporta i valori minimi (mm) del lato più piccolo **b** di pilastri a sezione rettangolare ovvero del diametro di pilastri a sezione circolare e della distanza **a** dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito **R** per le classi indicate di pilastri esposti su uno o più lati che rispettano le seguenti limitazioni:

- lunghezza effettiva del pilastro (da nodo a nodo) ≤ 6 m (per pilastri di piani intermedi) ovvero ≤ 4,5 m (per pilastri dell'ultimo piano)
- area complessiva di armatura A_s ≤ 0,04 A_c area efficace della sezione trasversale del pilastro.

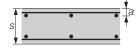


Classe	Esposto su più lati		Esposto su un lato
R 30	b = 200 / a = 30	300 / 25	160 / 25
R 60	b = 250 / a = 45	350 / 40	160 / 25
R 90	b = 350 / a = 50	450 / 40	160 / 25
R 120	b = 350 / a = 60	450 / 50	180 / 35
R 180	b = 450 / a = 70	_	230 / 55
R 240	_	_	300 / 70

I valori di "a" devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di "a" di 15 mm. In presenza di intonaco i valori di "a" ne possono tenere conto nella maniera indicata nella tabella D.5.1 (solette). Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

PARETI PORTANTI IN C.A. – (Tab. D.6.3) La tabella seguente riporta i valori minimi (mm) dello spessore **s** e della distanza **a** dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito **REI** per le classi indicate di pareti portanti esposte su uno o due lati che rispettano le seguenti limitazioni:

altezza effettiva della parete (da nodo a nodo) ≤ 6 m (per pareti di piani intermedi) ovvero
 ≤ 4,5 m (per pareti dell'ultimo piano).


Classe	Esposto su un lato	Esposto su due lati
REI 30	s = 120 / a = 10	120 / 10
REI 60	s = 130 / a = 10	140 / 10
REI 90	s = 140 / a = 25	170 / 25
REI 120	s = 160 / a = 35	220 / 35
REI 180	s = 210 / a = 50	270 / 55
REI 240	s = 270 / a = 60	350 / 60

I valori di "a" devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p.

In caso di armatura pre-tesa aumentare i valori di "a" di 15 mm. In presenza di intonaco i valori di "a" ne possono tenere conto nella maniera indicata nella tabella D.5.1 (solette). Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

PARETI NON PORTANTI IN C.A. – (Tab. D.6.4) La tabella seguente riporta i valori minimi (mm) dello spessore **s** sufficiente a garantire il requisito **EI** per le classi indicate di pareti non portanti esposte su un lato che rispettano le seguenti limitazioni:

- altezza effettiva della parete (da nodo a nodo) ≤ 6 m (per pareti di piani intermedi) ovvero
 ≤ 4,5 m (per pareti dell'ultimo piano);
- rapporto tra altezza di libera inflessione e spessore inferiore a 40

Classe	Esposto su un lato
El 30	s = 60
El 60	s = 80
El 90	s = 100
El 120	s = 120
El 180	s = 150
El 240	s = 180

CLASSIFICAZIONE IN BASE AI RISULTATI DI CALCOLI

L'allegato C del D.M. 16/2/2007 specifica che la resistenza al fuoco di una struttura in calcestruzzo può essere valutata analiticamente attraverso i metodi di calcolo specificati dalla norma EN 1992-1-2: "Progettazione delle strutture in calcestruzzo – parte 1-2: Regole generali – Progettazione strutturale contro l'incendio".

I metodi di calcolo che possono essere adottati nelle verifiche di resistenza al fuoco delle strutture in calcestruzzo previsti dalla norma sopra citata possono essere distinti in:

- metodi di calcolo semplificati,
- metodi di calcolo avanzati,
- metodi di calcolo derivanti dal confronto con tabelle.

Metodi di calcolo semplificati

L'eurocodice EN 1992-1-2 prevede due metodi di calcolo semplificati per la verifica delle sezioni in calcestruzzo armato:

- metodo dell'isoterma a 500 °C
- metodo a zona

Metodi di calcolo avanzati

Possono essere utilizzati per elementi strutturali singoli, per sottoinsiemi, per la struttura nel suo insieme e per ogni tipo di sezione trasversale. Questi metodi forniscono un'analisi realistica della struttura esposta al fuoco. Sono basati su principi ed ipotesi riconosciuti della teoria della diffusione del calore e della meccanica strutturale al fine di ottenere un'approssimazione attendibile del comportamento atteso dello specifico componente strutturale in situazione di incendio.

Metodi di calcolo derivanti dal confronto con tabelle

L'eurocodice EN 1992-1-2 contiene anche tabelle che possono essere utilizzate nella verifica della resistenza al fuoco delle strutture di calcestruzzo armato. Chiaramente è necessario verificare il rispetto delle condizioni di impiego e le limitazioni ad esse relative.

Il metodo si basa sulla verifica per singoli elementi e solo con esposizione alla curva di incendio standard (ISO 384).

Nel caso di utilizzo del metodo tabellare non sono necessarie verifiche riguardanti la resistenza a taglio e torsione e l'ancoraggio delle barre; inoltre non sono necessarie verifiche riguardanti lo spalling a patto che per distanze delle barre dalla superficie del calcestruzzo maggiori o uguali a 70 mm sia predisposta un'armatura di sacrificio avente maglia non superiore a 100 x 100 mm e diametro delle barre non inferiore a 4 mm.

L'utilizzo di ciascuna tabella presuppone il calcolo preliminare del coefficiente di utilizzo $\mu_{\rm fi}$ che, ricordiamo, rappresenta il rapporto tra l'azione che sollecita l'elemento stesso in condizioni d'incendio e la corrispondente resistenza a freddo.

$$\mu_{\mathit{fi}} = \frac{N_{\mathit{Ed.fi}}}{N_{\mathit{Rd}}}$$

Dove $N_{\text{Ed.fi}}$ è il carico assiale di progetto in situazione di incendio, N_{Rd} è la resistenza di progetto della sezione a temperatura ambiente.

L'eurocodice EN 1992-1-2 fornisce tabelle per pilastri, pareti, travi, solette e solai.

Di seguito si trovano soluzioni applicative con LASTRE FIREGUARD® utilizzando questo metodo ed integrando gli spessori di copriferro necessario con spessori equivalenti determinati sperimentalmente in base alla Norma EN 13381-3.

Riqualificazione delle strutture in calcestruzzo tramite protettivi

I sistemi di protezione vengono applicati alle strutture in calcestruzzo armato al fine di migliorare le prestazioni della struttura stessa. È possibile tenere conto della presenza di protezioni isolanti, applicate come rivestimento della superficie degli elementi strutturali, in base al rapporto di equivalenza tra materiale protettivo e conglomerato cementizio, definito come lo "spessore minimo di conglomerato cementizio in grado di produrre lo stesso effetto isolante di 1 cm di materiale protettivo".

I valori del rapporto di equivalenza dei materiali protettivi devono essere calcolati esclusivamente ricorrendo ai metodi di prova previsti dalla EN 13381-3 "Metodi di prova per la determinazione del contributo alla resistenza al fuoco di elementi strutturali. Parte 3: protezione applicata ad elementi in calcestruzzo"; il risultato delle prove condotte secondo la EN 13381-3 non è una vera e propria classificazione dell'elemento, bensì una procedura (assesment) per la determinazione degli spessori equivalenti in funzione del tipo di elemento da proteggere e della resistenza al fuoco richiesta. Si noti come il rapporto di equivalenza, essendo funzione anche delle caratteristiche di adesione del protettivo al supporto, sia variabile con la resistenza al fuoco richiesta.

Pertanto trasformando lo spessore del protettivo previsto in "copriferro equivalente" è possibile ricondursi alla generica sezione di calcestruzzo armato ed utilizzare le mappature termiche corrispondenti.

La metodologia di prova prevede che il rapporto di equivalenza venga determinato in base alle effettive condizioni di utilizzo, ponendo i seguenti limiti di applicabilità:

- prove eseguite su solette orizzontali sono estendibili ad applicazioni su muri verticali
- prove eseguite su travi orizzontali sono estendibili a pilastri

I limiti di applicabilità dei risultati sono comunque riportati negli assesment report per il controllo da parte dei professionisti.

Prove di laboratorio con rapporti di equivalenza determinati arbitrariamente da professionisti sono da considerarsi fuori dalla legge.

Global Building ha determinato i seguenti rapporti di equivalenza per le lastre FIREGUARD® 13 attraverso prove effettuate ai sensi dell'EN 13381-3.

Pareti e solette - Assesment Report Applus 11-2267-877 M1

Spessore equivalente del calcestruzzo (mm)							
T (min)	30'	60'	90'	120'	180'	240'	
sp (mm)	39	52	63	67	61	21	

Pilastri e travi - Assesment Report Applus 12-2267-543

Spessore equivalente del calcestruzzo (mm)						
T (min)			90'	120'	180'	240'
sp (mm)			50	54	50	15

Dimensionamento dei protettivi

Al fine del dimensionamento dei protettivi occorre pertanto:

- 1- Procedere alla determinazione dei copriferri necessari in funzione della resistenza al fuoco richiesta, della tipologia delle armature e delle sezioni minime attraverso i metodi analitici o la verifica delle tabelle precedentemente descritte.
- 2- Integrare i copriferri esistenti con i valori di calcolo a mezzo di uno spessore equivalente di protettivo le cui caratteristiche sono state determinate sperimentalmente a mezzo assesment report ai sensi dell'EN 13381-3.

PILASTRI IN C.A

DESCRIZIONE DI CAPITOLATO

Fornitura e posa in opera di protezione di pilastri in cemento armato con resistenza al fuoco R 30/60/90/120/180/240 realizzata con lastre FIREGUARD® spessore... mm (vedi tabelle), dimensioni massime 1220x2000 mm. costituite da silicati e solfati di calcio, esenti da amianto. prodotte per laminazione con controllo dell'essiccazione in stabilimento, in classe A1 (incombustibile) di reazione al fuoco, in conformità al rapporto di valutazione Applus 12-2267-543 secondo norma EN 13381-3.

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.2a della norma FN 1992-1-2.

considerando un fattore di utilizzazione µfi= 0,7, esposizione su 4 lati con copriferro esistente = 0 cm.

* - consultare l'ufficio tecnico

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.2a della norma

considerando un fattore di utilizzazione µfi= 0,7, esposizione su 4 lati con copriferro esistente = 1 cm.

REAZIONE AL FUOCO: A1 RESISTENZA AL FUOCO: R30-240

- Supporto: pilastri in cemento armato
- Rivestimento protettivo: lastre FIREGUARD® (vedi tabelle)
- Fissaggio: con tasselli metallici ad espansione diametro 6 mm passo 500 mm
- Finitura: stuccatura giunti e teste dei tasselli con stucco FIREGUARD COMPOUND

SPESSORE EQUIVALENTE PER LASTRE FIREGUARD® 13 (mm)							
T (min)	90'	120'	180'	240'			
sp (mm)	50	54	50	15			

Assesment report Applus 12-2267-543 Norma di prova: EN 13381-3 - EN 1992-1-2

Le lastre saranno applicate con tasselli metallici ad espansione diametro 6 mm lunghezza 40 mm posti ad interasse 500 mm.

La finitura dei giunti e delle teste dei tasselli sarà realizzata con stucco FIREGUARD COMPOUND.

Per le modalità di applicazione si veda apposito "manuale di posa".

DIMENSIONI MINIME DEL PILASTRO	COPRIFERRO = 0 cm ALTEZZE < 3 m						
(mm)	R30	R60	R90	R120	R180	R240	
200 x 200	12,7	12,7	25,4	25,4	*	*	
250 x 250	12,7	12,7	12,7	25,4	25,4	*	
300 x 300	12,7	12,7	12,7	12,7	25,4	*	
350 x 350	12,7	12,7	12,7	12,7	25,4	*	

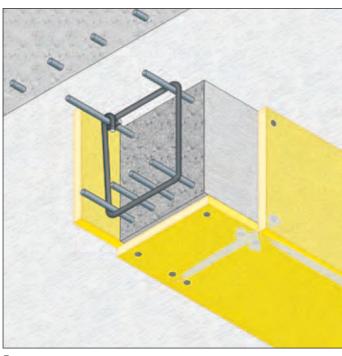
DIMENSIONI MINIME DEL PILASTRO		COPRIFERRO = 1 cm ALTEZZE < 3 m						
(mm)	R30	R60	R90	R120	R180	R240		
200 x 200	12,7	12,7	25,4	25,4	*	*		
250 x 250	12,7	12,7	12,7	12,7	25,4	*		
300 x 300	12,7	12,7	12,7	12,7	25,4	*		
350 x 350	12,7	12,7	12,7	12,7	12,7	*		

COPRIFERRO = 0 cm

* - consultare l'ufficio tecnico

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.2b della norma FN 19

- cons
- snell
- rapp
- espo


nsiderando un fattore di utilizzazione ufi= 0,7,	ALTEZZE > 3 m					
Insideral ido di l'attore di dilizzazione $\mu = 0,7$,	R90	R120	R180	R240		
porto meccanico di armatura ε = 0,5,	*	*	*	*		
posizione su 4 lati con copriferro esistente = 0 cm. 250 x 250 12,7 12,7	*	*	*	*		
300 x 300 12,7 12,7	25,4	25,4	*	*		
350 x 350 12,7 12,7	25,4	25,4	*	*		
400 x 400 12,7 12,7	12,7	25,4	25,4	*		
500 x 500 12,7 12,7	12,7	25,4	25,4	*		
onsultare l'ufficio tecnico 600 x 600 12,7 12,7	12,7	25,4	25,4	*		

DIMENSIONI

^{* -} co

TRAVI IN C.A.

DESCRIZIONE DI CAPITOLATO

Fornitura e posa in opera di protezione di travi in cemento armato con resistenza al fuoco R 30/60/90/120/180/240 realizzata con lastre FIREGUARD® spessore... mm (vedi tabelle), dimensioni massime 1220x2000 mm, costituite da silicati e solfati di calcio, esenti da amianto, prodotte per laminazione con controllo dell'essiccazione in stabilimento, in classe A1 (incombustibile) di reazione al fuoco, in conformità al rapporto di valutazione Applus 12-2267-543 secondo norma EN 13381-3.

REAZIONE AL FUOCO: A1 RESISTENZA AL FUOCO: R30-240

- Supporto: travi in cemento armato
- Rivestimento protettivo: lastre FIREGUARD® (vedi tabelle)
- Fissaggio: con tasselli metallici ad espansione diametro 6 mm passo 500 mm
- Finitura: stuccatura giunti e teste dei tasselli con stucco FIREGUARD COMPOUND

SPESSORE EQUIVALENTE PER LASTRE FIREGUARD® 13 (mm)							
T (min)	90'	120'	180'	240'			
sp (mm)	50	54	50	15			

Assesment report Applus 12-2267-543 Norma di prova: EN 13381-3 – EN 1992-1-2

Le lastre saranno applicate con tasselli metallici ad espansione diametro 6 mm lunghezza 40 mm posti ad interasse 500 mm.

La finitura dei giunti e delle teste dei tasselli sarà realizzata con stucco FIREGUARD COMPOUND.

Per le modalità di applicazione si veda apposito "manuale di posa".

TRAVI IN CEMENTO ARMATO NORMALE A SEZIONE RETTANGOLARE

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.5 dell'EN 1992-1-2, con fattore di utilizzazione $\mu_f = 0.7$; con copriferro esistente = 0 cm.

LARGHEZZA MINIMA DELLA TRAVE (mm)								
()	R30	R60	R90	R120	R180	R240		
120	12,7	12,7	12,7	25,4	25,4	*		
160	12,7	12,7	12,7	12,7	25,4	*		
200	12,7	12,7	12,7	12,7	25,4	*		
240	12,7	12,7	12,7	12,7	25,4	*		
300	12,7	12,7	12,7	12,7	25,4	*		
400	12,7	12,7	12,7	12,7	25,4	*		
600	12,7	12,7	12,7	12,7	12,7	*		

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.5 dell'EN 1992-1-2, con fattore di utilizzazione $\mu_{\rm fl}=0,7$; con copriferro esistente = 1 cm.

LARGHEZZA	TRAVI SEMPLICEMENTE APPOGGIATE								
MINIMA DELLA TRAVE (mm)	COPRIFERRO = 1 cm								
()	R30	R180	R240						
120	12,7	12,7	12,7	25,4	25,4	*			
160	12,7	12,7	12,7	12,7	25,4	*			
200	12,7	12,7	12,7	12,7	12,7	*			
240	12,7	12,7	12,7	12,7	12,7	*			
300	12,7	12,7	12,7	12,7	12,7	*			
400	12,7	12,7	12,7	12,7	12,7	*			
600	12,7	12,7	12,7	12,7	12,7	*			

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.6 dell'EN 1992-1-2, con fattore di utilizzazione $\mu_{\rm f}=0,7$; con copriferro esistente = 0 cm.

LARGHEZZA MINIMA DELLA TRAVE (mm)	TRAVI CONTINUE COPRIFERRO = 0 cm							
()	R30	R60	R90	R120	R180	R240		
160	12,7	12,7	12,7	12,7	12,7	*		
200	12,7	12,7	12,7	12,7	12,7	*		
240	12,7	12,7	12,7	12,7	12,7	*		
300	12,7	12,7	12,7	12,7	12,7	*		
400	12,7	12,7	12,7	12,7	12,7	*		
600	12,7	12,7	12,7	12,7	12,7	*		

* - consultare l'ufficio tecnico

NOTA: Nel caso di sezioni minori o con sezioni ad "H" consultare l'ufficio tecnico.

TRAVI IN CEMENTO ARMATO PRECOMPRESSO IN BARRE A SEZIONE RETTANGOLARE

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.5 dell'EN 1992-1-2, con fattore di utilizzazione $\mu_{\rm f}=0.7$; con copriferro esistente = 1 cm.

TRAVI SEMPLICEMENTE APPOGGIATE LARGHEZZA MINIMA **DELLA TRAVE** COPRIFERRO = 1 cm (mm) R30 R240 R60 R90 R120 R180 120 12 7 12,7 12,7 254 25,4 12,7 25,4 160 12,7 12,7 12,7 12,7 25,4 200 12,7 12,7 12,7 * 12,7 240 12,7 12,7 12,7 25,4 * 300 12,7 12,7 12,7 12,7 25,4 * 400 12,7 12,7 12,7 12,7 25,4 * 600 12,7 12,7 12,7 12,7 12,7

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.6 dell'EN 1992-1-2, con fattore di utilizzazione $\mu_{\rm f}=0,7$; con copriferro esistente = 0 cm.

LARGHEZZA MINIMA DELLA TRAVE (mm)		4	TRAVI CO	ONTINUE RO = 0 cm		
(,	R30	R60	R90	R120	R180	R240
160	12,7	12,7	12,7	12,7	25,4	*
200	12,7	12,7	12,7	12,7	25,4	*
240	12,7	12,7	12,7	12,7	25,4	*
300	12,7	12,7	12,7	12,7	25,4	*
400	12,7	12,7	12,7	12,7	12,7	*
600	12,7	12,7	12,7	12,7	12,7	*

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.5 dell'EN 1992-1-2, con fattore di utilizzazione $\mu_{\rm f}=0,7$; con copriferro esistente = 2 cm.

LARGHEZZA MINIMA DELLA TRAVE (mm)	TRAVI SEMPLICEMENTE APPOGGIATE COPRIFERRO = 2 cm							
()	R30	R60	R90	R120	R180	R240		
120	12,7	12,7	12,7	25,4	25,4	*		
160	12,7	12,7	12,7	12,7	25,4	*		
200	12,7	12,7	12,7	12,7	12,7	*		
240	12,7	12,7	12,7	12,7	12,7	*		
300	12,7	12,7	12,7	12,7	12,7	*		
400	12,7	12,7	12,7	12,7	12,7	*		
600	12,7	12,7	12,7	12,7	12,7	*		

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.6 dell'EN 1992-1-2, con fattore di utilizzazione $\mu_{\text{fi}} = 0,7$; con copriferro esistente = 1 cm.

LARGHEZZA MINIMA DELLA TRAVE (mm)		4	TRAVI CO	ONTINUE RO = 1 cm		
()	R30	R60	R90	R120	R180	R240
160	12,7	12,7	12,7	12,7	12,7	*
200	12,7	12,7	12,7	12,7	12,7	*
240	12,7	12,7	12,7	12,7	12,7	*
300	12,7	12,7	12,7	12,7	12,7	*
400	12,7	12,7	12,7	12,7	12,7	*
600	12,7	12,7	12,7	12,7	12,7	*

TRAVI IN C.A. PRECOMPRESSO IN TREFOLI E FILI A SEZIONE RETTANGOLARE

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.5 dell'EN 1992-1-2, con fattore di utilizzazione $\mu_f = 0.7$; con copriferro esistente = 2 cm.

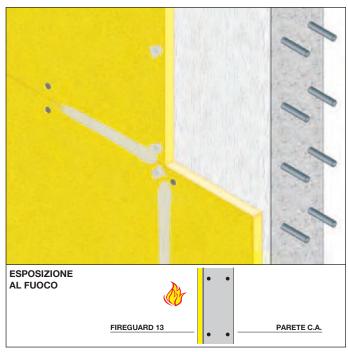
LARGHEZZA MINIMA DELLA TRAVE (mm)	TRAVI SEMPLICEMENTE APPOGGIATE COPRIFERRO = 2 cm							
()	R30 R60 R90 R120 R180							
120	12,7	12,7	12,7	25,4	25,4	*		
160	12,7	12,7	12,7	12,7	25,4	*		
200	12,7	12,7	12,7	12,7	25,4	*		
240	12,7	12,7	12,7	12,7	25,4	*		
300	12,7	12,7	12,7	12,7	25,4	*		
400	12,7	12,7	12,7	12,7	12,7	*		
600	12,7	12,7	12,7	12,7	12,7	*		

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.6 dell'EN 1992-1-2, con fattore di utilizzazione $\mu_{\rm fi}=0.7$; con copriferro esistente = 1 cm.

LARGHEZZA			TRAVI C	ONTINUE					
MINIMA DELLA TRAVE (mm)	COPRIFERRO = 1 cm								
()	R30	R180	R240						
160	12,7	12,7	12,7	12,7	25,4	*			
200	12,7	12,7	12,7	12,7	25,4	*			
240	12,7	12,7	12,7	12,7	25,4	*			
300	12,7	12,7	12,7	12,7	25,4	*			
400	12,7	12,7	12,7	12,7	12,7	*			
600	12,7	12,7	12,7	12,7	12,7	*			

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.5 dell'EN 1992-1-2, con fattore di utilizzazione $\mu_{\rm fi}=0.7$; con copriferro esistente = 3 cm.

LARGHEZZA MINIMA DELLA TRAVE (mm)				IENTE APPOGGIATE RRO = 3 cm			
()	R30 R60 R90 R120 R180						
120	12,7	12,7	12,7	25,4	25,4	*	
160	12,7	12,7	12,7	12,7	25,4	*	
200	12,7	12,7	12,7	12,7	12,7	*	
240	12,7	12,7	12,7	12,7	12,7	*	
300	12,7	12,7	12,7	12,7	12,7	*	
400	12,7	12,7	12,7	12,7	12,7	*	
600	12,7	12,7	12,7	12,7	12,7	*	


Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta in conformità alla tabella 5.6 dell'EN 1992-1-2, con fattore di utilizzazione $\mu_{\rm f}=0.7$; con copriferro esistente = 2 cm.

LARGHEZZA MINIMA DELLA TRAVE (mm)	TRAVI CONTINUE COPRIFERRO = 2 cm							
()	R30	R60	R90	R120	R180	R240		
160	12,7	12,7	12,7	12,7	25,4	*		
200	12,7	12,7	12,7	12,7	12,7	*		
240	12,7	12,7	12,7	12,7	12,7	*		
300	12,7	12,7	12,7	12,7	12,7	*		
400	12,7	12,7	12,7	12,7	12,7	*		
600	12,7	12,7	12,7	12,7	12,7	*		

* - consultare l'ufficio tecnico NOTA: Nel caso di sezioni minori o con sezioni ad "H" consultare l'ufficio tecnico.

PARETI IN C.A

DESCRIZIONE DI CAPITOLATO

Fornitura e posa in opera di rivestimento di pareti in cemento armato con resistenza al fuoco REI 30/60/90/120/180/240 realizzato con lastre FIREGUARD® spessore... mm (vedi tabelle), dimensioni massime 1220x2000 mm, costituite da silicati e solfati di calcio, esenti da amianto, prodotte per laminazione con controllo dell'essiccazione in stabilimento, in classe A1 (incombustibile) di reazione al fuoco, in conformità al rapporto di valutazione Applus 11-2267-877 M1 secondo norma EN 13381-3.

REAZIONE AL FUOCO: A1 RESISTENZA AL FUOCO: REI 30-240

• Esposizione al fuoco: su 1 o 2 lati

• Supporto: pareti in c.a.

• Rivestimento protettivo: lastre FIREGUARD® (vedi tabelle)

• Fissaggio: con tasselli metallici ad espansione diametro 9 mm passo 500 mm

• Finitura: stuccatura giunti e teste dei tasselli con stucco FIREGUARD COMPOUND

SPESSORE EQUIVALENTE PER LASTRE FIREGUARD® 13 (mm)								
T (min)	T (min) 30' 60' 90' 120' 180' 240'							
sp (mm)	39	52	63	67	61	21		

Assesment report Applus 11-2267-877 M1 Norma di prova: EN 13381-3 – EN 1992-1-2

Le lastre saranno applicate con tasselli metallici ad espansione diametro 9 mm, lunghezza 40 mm, ad interasse 500 mm.

La finitura dei giunti e delle teste dei tasselli sarà realizzata con stucco FIREGUARD COMPOUND.

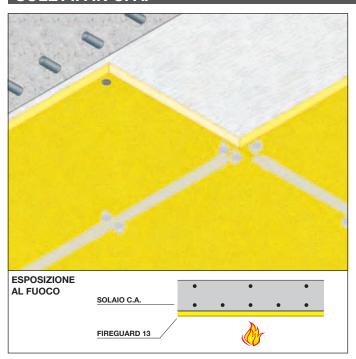
Per le modalità di applicazione si veda apposito "manuale di posa".

PARETI NON PORTANTI

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta e dello spessore della muratura, in conformità alla tabella 5.3 dell'EN 1992-1-2, snellezza < 40.

SPESSORE MINIMO DELLA PARETE IN C.A. (mm)	ALTEZZA MASSIMA (m)	EI 30	EI 60	EI 90	EI 120	EI 180	EI 240
60	2,4	/	12,7	12,7	12,7	25,4	*
65	2,6	/	12,7	12,7	12,7	25,4	*
70	2,8	/	12,7	12,7	12,7	25,4	*
75	3,0	/	12,7	12,7	12,7	25,4	*
80	3,2	/	/	12,7	12,7	25,4	*
90	3,6	/	/	12,7	12,7	12,7	*

PARETI PORTANTI DI COMPARTIMENTAZIONE (FUOCO SU UN LATO)


Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta e dello spessore della muratura, in conformità alla tabella 5.4 dell'EN 1992-1-2, considerando un fattore di utilizzazione μ_i = 0,7; snellezza < 40.

SPESSORE MINIMO DELLA PARETE IN C.A. (mm)	ALTEZZA MASSIMA (m)	REI 30	REI 60	REI 90	REI 120	REI 180	REI 240
100	4,0	/	12,7	12,7	12,7	25,4	*
110	4,4	/	12,7	12,7	12,7	25,4	*
120	4,8	/	12,7	12,7	12,7	25,4	*
130	5,2	/	/	12,7	12,7	25,4	*
140	5,6	/	/	12,7	12,7	25,4	*
150	6,0	/	/	12,7	12,7	12,7	*

^{* -} consultare l'ufficio tecnico

SOLETTA IN C. A.

Fornitura e posa in opera di rivestimento di solai in cemento armato con resistenza al fuoco REI 30/60/90/120/180/240 realizzato con lastre FIREGUARD® spessore... mm (vedi tabelle), dimensioni massime 1220x2000 mm, costituite da silicati e solfati di calcio, esenti da amianto, prodotte per laminazione con controllo dell'essiccazione in stabilimento, in classe A1 (incombustibile) di reazione al fuoco, in conformità al rapporto di valutazione Applus 11-2267-877 M1 secondo norma EN 13381-3.

REAZIONE AL FUOCO: **A1**RESISTENZA AL FUOCO: **REI 30-240**

• Tipo di solaio: in cemento armato

- Rivestimento protettivo: lastre FIREGUARD® (vedi tabelle)
- Fissaggio: con tasselli metallici ad espansione diametro 9 mm passo 500 mm
- Finitura: stuccatura giunti e teste dei tasselli con stucco FIREGUARD COMPOUND

SPESSORE EQUIVALENTE PER LASTRE FIREGUARD® 13 (mm)						
T (min)	30'	60'	90'	120'	180'	240'
sp (mm)	39	52	63	67	61	21

Assesment report Applus 11-2267-877 M1 Norma di prova: EN 13381-3 – EN 1992-1-2

Le lastre saranno applicate con tasselli metallici con larghezza 9 mm lunghezza 40 mm ad interasse di 500 mm.

La finitura dei giunti e delle teste dei tasselli sarà realizzata con stucco FIREGUARD COMPOUND.

Per le modalità di applicazione si veda apposito "manuale di posa".

SOLETTE PIANE IN C. A. NORMALE SEMPLICEMENTE APPOGGIATE

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta e dello spessore della soletta, in conformità alla tabella 5.8 dell'EN 1992-1-2.

* - consultare l'ufficio tecnico

DESCRIZIONE DI CAPITOLATO

SPESSORE MINIMO DELLA	COPRIFERRO = 0 cm					
SOLETTA (mm)	REI 30	REI 60	REI 90	REI 120	REI 180	REI 240
60	12,7	12,7	12,7	12,7	25,4	*
80	12,7	12,7	12,7	12,7	25,4	*
100	12,7	12,7	12,7	12,7	12,7	*

SOLETTE PIANE IN C. A. PRECOMPRESSO SEMPLICEMENTE APPOGGIATE

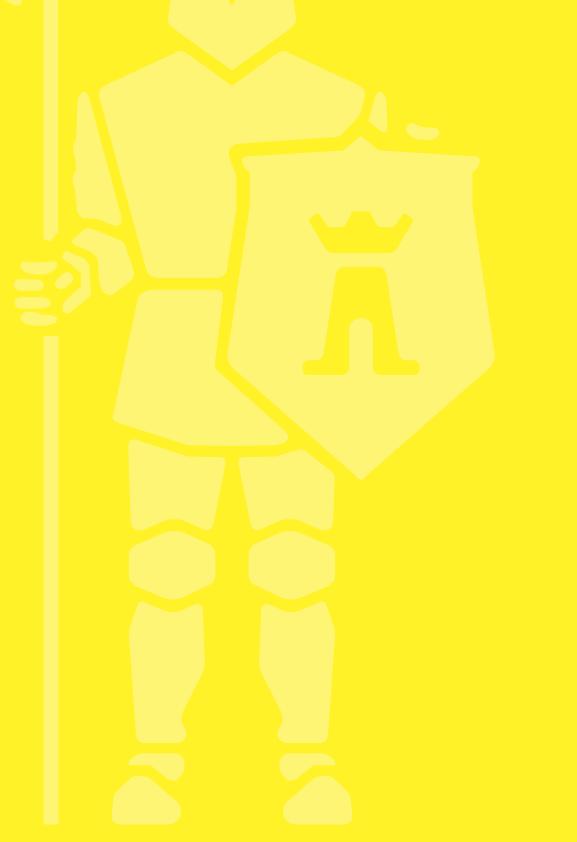
Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta e dello spessore della soletta, in conformità alla tabella 5.8 dell'EN 1992-1-2.

* - consultare l'ufficio tecnico

SPESSORE MINIMO DELLA	COPRIFERRO = 0 cm					
SOLETTA (mm)	REI 30	REI 60	REI 90	REI 120	REI 180	REI 240
60	12,7	12,7	12,7	12,7	25,4	*
80	12,7	12,7	12,7	12,7	25,4	*
100	12,7	12,7	12,7	12,7	25,4	*

LASTRE CONTINUE IN C. A. NORMALE E PRECOMPRESSO SU PIÙ APPOGGI

Spessore di protezione con lastre FIREGUARD® in funzione della resistenza al fuoco richiesta e dello spessore della lastra, in conformità alla tabella 5.9 dell'EN 1992-1-2.


SPESSORE MINIMO DELLA	COPRIFERRO = 0 cm					
LASTRA (mm)	REI 30	REI 60	REI 90	REI 120	REI 180	REI 240
150	12,7	12,7	12,7	12,7	12,7	*
175	12,7	12,7	12,7	12,7	12,7	*

* - consultare l'ufficio tecnico

NOTA: Nel caso di lastre nervate contattate l'ufficio tecnico.

PROTEZIONI STRUTTURALI

STRUTTURE IN LEGNO

PROTEZIONI STRUTTURALI: LEGNO

COMPORTAMENTO DEL LEGNO AL FUOCO

Il legno è uno dei primi materiali da costruzione utilizzati nell'edilizia, possiede una elevata resistenza all'invecchiamento, agli agenti atmosferici e alle sollecitazioni meccaniche. Il problema della sua resistenza al fuoco si presenta pertanto sia in nuove costruzioni che in edifici storici.

Gli elementi strutturali in legno hanno peculiari caratteristiche: sono combustibili ed hanno un basso coefficiente di conducibilità termica (circa 0,15 W/mK) ossia bruciano ma possiedono ottime caratteristiche di isolamento.

La perdita di capacità portante dovuta all'incendio è imputabile alla diminuzione della sezione resistente dovuta alla carbonizzazione.

Il meccanismo di combustione del legno è noto:

- 1. Fase di riscaldamento: con temperature fino a 200°C. Si assiste all'evaporazione dell'acqua e all'emissione di gas non combustibili, senza variazione delle resistenze meccaniche.
- 2. Sviluppo di reazioni endotermiche con conseguente presenza di gas infiammabili e insorgere dell'accensione che si verifica con temperature comprese tra i 250 e 280 °C.
- 3. Sviluppo di reazioni esotermiche con emissione di calore e gas a temperature comprese tra i 300 e 500 °C, è questa la fase della carbonizzazione ed incenerimento del legno.

La carbonizzazione si può originare anche quando il legno è a contatto con superfici calde che ne determinano l'accensione a temperature anche più basse di quelle di ignizione. Quindi in caso di contatto continuo, la temperatura del corpo contiguo col legno, in via cautelativa, non dovrebbe superare i 100°C. Importanti per l'ignizione sono anche gli aspetti dimensionali: piccole pezzature si riscaldano più velocemente rispetto a quelle grosse.

Da un punto di vista strutturale la carbonizzazione avviene abbastanza lentamente a causa della bassa conducibilità del legno e inoltre la parte superficiale carbonizzata costituisce un elemento protettivo per gli strati più interni che pertanto mantengono le loro capacità portanti.

METODI PER LA DETERMINAZIONE DELLE CLASSI DI RESISTENZA AL FUOCO "R" DI STRUTTURE PROTETTE

Il D.M. 16 febbraio 2007 prevede l'utilizzo in pratica del solo metodo analitico in accordo con la norma EN 1995-1-2: "Progettazione delle strutture in legno".

Non sono previsti metodi tabellari, e le prove di tipo sperimentale su singoli elementi trovano scarsa applicazione nella pratica a causa dei vincoli di estensione. La norma EN 1995-1-2 esamina il caso di strutture (travi e pilastri) protette con sistemi in lastre. In questo caso la velocità di carbonizzazione del legno ha un comportamento particolare in quanto:

- l'inizio della carbonizzazione è posticipata;
- la carbonizzazione può iniziare prima della rottura della protezione al fuoco, ma a velocità minore rispetto all'elemento non protetto:
- dopo la rottura della protezione al fuoco la velocità di carbonizzazione aumenta rispetto al caso dell'elemento non protetto, questo fenomeno avviene fino a quando la profondità di carbonizzazione uguaglia la profondità di carbonizzazione dell'elemento non protetto, oppure quando raggiunge i 25 mm. I parametri che descrivono il comportamento dei rivestimenti protettivi devono essere determinati su base sperimentale attraverso le norme EN 13381-7, Metodi di prova per la determinazione del contributo alle resistenza al fuoco di elementi strutturali. -Protezione applicata ad elementi in legno: tra di essi, ad esempio:
- il momento in cui comincia la carbonizzazione dell'elemento;
- il momento della caduta del materiale di protezione;
- la velocità di carbonizzazione prima del fallimento della protezione.

Alcune indicazioni circa il comportamento di protettivi in lastre vengono comunque fornite dalla norma EN 1995-1-2 in assenza di prove sperimentali.

PROTEZIONE DI PILASTRI IN LEGNO

DESCRIZIONE DI CAPITOLATO

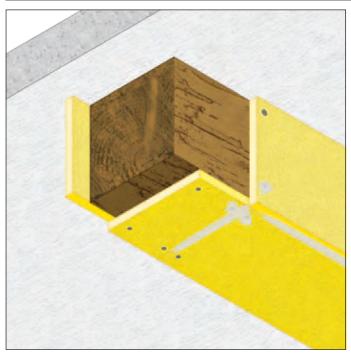
Fornitura e posa in opera di protezione di pilastri in legno con resistenza al fuoco R 30/45/60/90/120/180 realizzata con lastre FIREGUARD® 13 spessore 12,7 mm e FIREGUARD® 25 spessore 25,4 mm (vedi tabella), costituite da silicati e solfati di calcio, esenti da amianto, prodotte per laminazione con controllo dell'essiccazione in stabilimento, in classe A1 (incombustibile) di reazione al fuoco.

REAZIONE AL FUOCO: A1 RESISTENZA AL FUOCO: R30-180

• Supporto: pilastri in legno

- Rivestimento protettivo: lastre FIREGUARD® (vedi tabella)
- **Fissaggio:** con viti auto perforanti fosfatate poste ad interasse 250 mm per 600 mm.
- Finitura: stuccatura giunti e teste delle viti con stucco FIREGUARD COMPOUND

RESISTENZA AL FUOCO CON LASTRE FIREGUARD (spessore mm)							
R30	2 x 12,7 *	R90	2 x 25,4 *				
R45	2 x 12,7 *	R120	2 x 25,4 *				
R60	2 x 12,7 *	R180	3 x 25,4 *				


^{*} gli spessori sono calcolati considerando un fattore di utilizzazione dell'80% su sezione con dimensioni minime 20x40 cm. Per casi particolari consultare l'ufficio tecnico

Valutazione analitica Norma: EN 1995-1-2

Le lastre saranno applicate con viti auto perforanti fosfatate poste ad interasse di 250 mm per 600 mm. La finitura dei giunti e delle teste delle viti sarà realizzata con stucco FIREGUARD COMPOUND.

Per le modalità di applicazione si veda apposito "manuale di posa".

PROTEZIONE DI TRAVI IN LEGNO

DESCRIZIONE DI CAPITOLATO

Fornitura e posa in opera di protezione di travi in legno con resistenza al fuoco R 30/45/60/90/120/180 realizzata con lastre FIREGUARD® 13 spessore 12,7 mm e FIREGUARD® 25 spessore 25,4 mm (vedi tabella), costituite da silicati e solfati di calcio, esenti da amianto, prodotte per laminazione con controllo dell'essiccazione in stabilimento, in classe A1 (incombustibile) di reazione al fuoco.

REAZIONE AL FUOCO: A1 RESISTENZA AL FUOCO: R30-180

• Supporto: travi in legno

• Rivestimento protettivo: lastre FIREGUARD® (vedi tabella)

- **Fissaggio:** con viti auto perforanti fosfatate poste ad interasse 250 mm per 600 mm.
- Finitura: stuccatura giunti e teste delle viti con stucco FIREGUARD COMPOUND

RESISTENZA AL FUOCO CON LASTRE FIREGUARD (spessore mm)							
R30	2 x 12,7 *	R90	2 x 25,4 *				
R45	2 x 12,7 *	R120	2 x 25,4 *				
R60	2 x 12,7 *	R180	3 x 25,4 *				

* gli spessori sono calcolati considerando un fattore di utilizzazione dell'80% su sezione con dimensioni minime 20x40 cm. Per casi particolari consultare l'ufficio tecnico.

Valutazione analitica Norma: EN 1995-1-2

Le lastre saranno applicate con viti auto perforanti fosfatate poste ad interasse di 250 mm per 600 mm. La finitura dei giunti e delle teste delle viti sarà realizzata con stucco FIREGUARD COMPOUND.

Per le modalità di applicazione si veda apposito "manuale di posa".

